Subscribe to RSS
DOI: 10.1055/a-1071-8219
Was der (Viszeral-)Chirurg als neue Erkenntnisse über die Gallensäuren und deren Zusammenspiel mit dem Darmmikrobiom wissen sollte
What the (abdominal) surgeon needs to know on novel insights regarding cholic acids and their interaction with the intestinal microbiomaPublication History
13 May 2019
24 November 2019
Publication Date:
04 February 2020 (online)
Zusammenfassung
Der (Viszeral-)Chirurg lernt auch durch Anlehnung an zahlreiche medizinische Nachbarfächer die (patho)biochemischen und (patho)physiologischen Konsequenzen seines erkrankungsrelevanten operativen Wirkens (Veränderung der Anatomie des GI-Trakts und seiner Anhangsorgane, Medikation etc.) kennen und verstehen.
Ziel & Methode Mit kompakter narrativer Kurzübersicht soll die Verflechtung von Gallensäuren (GS) im Stoffwechsel, insbesondere im Zusammenhang mit geplantem oder ausgeführtem (viszeral)chirurgischen Vorgehen illustriert werden. Dazu wurden i) einschlägige Referenzen der medizinisch-wissenschaftlichen Literatur und ii) eigene fachspezifisch gewonnene Erkenntnisse herangezogen.
Ergebnisse (Eckpunkte) 1. Chirurgie und Biochemie weisen schon früh in der Geschichte einen gemeinsamen Betrachtungsgegenstand auf, u. a. Lebererkrankungen wie z. B. hinsichtlich der Konsequenzen eines gestörten Pfortaderkreislaufs und der Leberzirrhose. 2. GS sind (i) natürliche Detergenzien, (ii) Bestandteile der Cholesterin-Gallensteine und (iii) essenzielle Signalmoleküle der Darm-Leber-Stoffwechselinteraktion. Cholsäure [CA] und Chenodesoxycholsäure [CDCA] dominieren mit je ~35 % den Gallensäure-Pool. Durch Konjugation der GS mit Taurin und Glycin wird ihre Löslichkeit erhöht. Der enterohepatische Kreislauf minimiert die Ausscheidung der GS. 3. Die Bildung der GS in der Leber aus Cholesterin (Umsatz/pro Tag: 0,2–0,6 g Cholesterol) kontrolliert die Cholesterin-7α-Hydroxylase (CYP7A1). Eine toxische GS-Akkumulation wird durch GS-induzierte Repression der CYP7A1-Expression und Sulfatierung der GS (Erhöhung der Harngängigkeit) verhindert. 4. GS haben regulatorische Aktivitäten im Energie-, Glukose-, Lipid- und Lipoproteinstoffwechsel und innerhalb des angeborenen Immunsystems. Durch die Bindung der GS an den Farnesoid-X-Kernrezeptor [FXR] und den membranalen G-Protein-gekoppelten Gallensäurerezeptor-1 [GPBAR1, TGR5] werden vielfältige Wirkungen im Fett- und Kohlenhydratstoffwechsel ausgelöst. 5. GS triggern im braunen Fettgewebe und im Skelettmuskel durch Aktivierung des GPBAR1-MAPK-Signalwegs die Expression der Iodothyronin-Dejodinase (DIO2). Dadurch wird vermehrt Thyroxin (T4) in Trijodthyronin (T3) umgewandelt und in der Folge werden die Fettverbrennung und die Thermogenese gesteigert. 6. GS verändern das intestinale Mikrobiom durch bakteriolytische Aktivitäten und andererseits wird das GS-Profil vom Mikrobiom moduliert. Typische mikrobielle Wirkungen auf den GS-Pool sind die (i) Abspaltung der Glycin- und Taurinreste von den konjugierten GS durch „bile salt hydrolases“ und (ii) die chemische Modifizierung freier, primärer GS durch Re-Amidierung, Oxydation-Reduktion, Veresterung und Desulfatierung. 7. GS hemmen das durch Lipopolysaccharide (Membranbestandteil gramnegativer Bakterien) induzierte endotoxine Entzündungsgeschehen. Über die Bindung der GS an Makrophagenrezeptoren (GPBAR1 und FXR) wird (i) die LPS-induzierte proinflammatorische Zytokinbildung vermindert und die Expression des antiinflammatorischen IL-10 befördert. Außerdem werden (ii) das Leukozyten-„Trafficking“ reguliert und (iii) das Inflammasom von Makrophagen und neutrophilen Granulozyten aktiviert. 8. Die mit der Adipositaschirurgie (z. B. beim „Roux-en-Y gastric bypass“ [RYGB]) erzielten gewichtsunabhängigen Veränderungen korrelieren mit einem erhöhten GS-Serumspiegel und einem veränderten intestinalen GS-Profil. Letzteres führt sekundär zum „Umbau“ des Mikrobioms. RYGB hat u. a. positive Wirkungen auf den Stoffwechsel der Kohlenhydrate. So wird die Insulinsensitivität der Leber verbessert und die Sekretion des Glucagon-like peptide 1 gesteigert.
Schlussfolgerung GS sind ein Paradebeispiel für metabolische Regulatoren, deren Interaktionen mit vielfältigen (patho)biochemischen und (patho)physiologischen Vorgängen (viszeral)chirurgisch relevante Erkrankungen und (viszeral)chirurgisch-operative Maßnahmen beeinflussen. Ihre biochemisch-physiologischen Aktivitäten und deren Verständnis auf molekularer Ebene sollten zum medizinisch-wissenschaftlichen Rüstzeug des versierten modernen (Viszeral-)Chirurgen gehören.
Abstract
The abdominal surgeon may have the opportunity to steadily learn on the (patho-)biochemical and (-)physiological consequences of his disease-related surgical activity (change of anatomy of the GI tract and its surrounding organs, medication and so on) if he refers closely to several medical disciplines as specifically indicated.
Aim & Method By means of a short compact overview based on (i) topic-related references from the scientific medical literature and (ii) own surgery-specific perceptions, interrelation of cholic acids (CA) with metabolism, in particular, with planned or performed (abdomino-)surgical procedures should be illustrated.
Results (corner points) 1. Surgery and biochemistry have a common and traditionally matured matter of consideration with regard to the consequences of an altered portal vein circulation and liver cirrhosis. 2. CA are (i) natural detergents, (ii) components of cholesterol-associated gall stones and (iii) essential signal molecules of intestine-liver metabolic interaction. CA and chenodesoxycholic acid [CDCA] dominate the CA pool with approximately 35 %. By conjugation of CA with taurine und glycine, its solubility is increased. The enterohepatic circulation minimizes the excretion of CA. 3. The generation of CA out of cholesterol within the liver (turnover/day: 0.2–0.6 g cholesterol) is controlled by cholesterol-7α-hydroxylase (CYP7A1). A toxic CA accumulation is prevented by a CA-induced repression of CYP7A1 expression and sulfation of CA (resulting in an increase of urine solubility). 4. CA show regulatory activities in the energy, glucose, lipid and lipoprotein metabolism and connate immune system. By binding of the CA to the farnesoid X-nuclear receptor [FXR] and the membranous G-protein-coupled CA receptor-1 [GPBAR1, TGR5], mannifold effects within the fat and carbohydrate metabolism are induced. 5. CA trigger the expression of the iodothyronine-dejodinase (DIO2) within the brown fat tissue and skelet muscles by activation of the GPBAR1-MAPK signal pathways. Hence, thyroxine (T4) is transformed to trijodthyronine (T3) and, subsequently, fat oxidation and thermogenesis are increased. 6. CA change the intestinal microbioma by bacteriolytic activities and, on the other hand, the CA profile is modulated by the microbioma. Typical microbial effects of the CA pool are (i) separation of glycine and taurine residuals of conjugated CA by “bile salt hydrolases” and (ii) chemical modification of free, primary CA by re-amidation, oxidation-reduction, esterification and desulfation. 7. CA inhibit the endotoxin-based inflammatory response induced by lipopolysaccharides (LPS; membranous component of gram-negative bacteria). Via binding of CA to macrophages-associated receptors (GPBAR1 and FXR), (i) the LPS-induced proinflammatory cytokine generation is reduced and the expression of antiinflammatory IL-10 is promoted. In addition, (ii) white-blood cell “trafficking” is regulated and (iii) inflammasoma is activated by macrophages and neutrophil granulocytes. 8. The body weight-independent changes after bariatric surgery (e. g., in case of “Roux-en-Y gastric bypass” [RYGB]) correlate with an increased CA serum level and an altered intestinal CA profile. The latter leads secundarily to a modification of the microbioma. RYGB has – among others – positive effects onto the carbohydrate metabolism. Thus, insulin sensitivity of the liver is improved and the secretion of the glucagon-like peptide 1 is enhanced.
Conclusion CA are a parade example for metabolic regulators, the interactions of which have an impact onto various (patho-)biochemical and (-)physiological processes, (abdomino-)surgically relevant diseases and (abdomino-)surgical measures. Their biochemical/physiological activities and insight into associated molecular processes should be part of the medical and scientific skills of a modern (abdominal) surgeon with a developed pathophysiological expertise.
-
Literatur
- 1 Esser G. Pfortaderhochdruck und Eiweißstoffwechsel (Untertitel: Indikation und metabolische Konsequenzen porto-kavaler Anastomosen bei Leberzirrhosekranken). Berlin: Walter de Gruyter & Co; 1969
- 2 Roth K. Sir Hans Adolf Krebs (1900–1981): Dann machte ich mich allein auf den Weg, um den 11-Uhr-Zug zu erreichen. In: Roth K. Chemische Köstlichkeiten. Weinheim: 2010: 168-181
- 3 Kinsell LW, Margens S. et al. Studies in methionine metabolism; the fate of intravenously administered S35-labeled-methionine in normal adult males, in patients with chronic hepatic disease, idiopathic hypoproteinemia and Cushing's syndrome. J Clin Invest 1950; 29: 238-250
- 4 Nelson D, Cox M. Lehninger Biochemie. 4.. Aufl. Heidelberg: Springer; 2011: 909
- 5 Šarenac TM, Mikov M. Bile Acid Synthesis: From Nature to the Chemical Modification and Synthesis and Their Applications as Drugs and Nutrients. Front Pharmacol 2018; 9: 939
- 6 Alnouti Y. Bile acid sulfatation: a pathway of bile acid elimination and detoxification. Toxicol Sci 2009; 108: 225-246
- 7 Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006; 47: 241-259
- 8 Amaral JD, Viana RJ, Ramalho RM. et al. Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res 2009; 50: 1721-1734
- 9 Keitel V, Kubitz R, Häussinger D. Endocrine and paracrine role of bile acids. World J Gastroenterol 2008; 14: 5620-5629
- 10 Zhou H, Hylemon PB. Bile acids are nutrient signaling hormones. Steroids 2014; 86: 62-68
- 11 Di Ciaula A, Garruti G, Lunardi Baccetto R. et al. Bile Acid Physiology. Ann Hepatol 2017; 16 (Suppl. 01) s4-s14
- 12 Martinot E, Sèdes L, Baptissart M. et al. Bile acids and their receptors. Mol Aspects Med 2017; 56: 2-9
- 13 Fiorucci S, Biagioli M, Zampella A. et al. Bile acid activated receptors regulate innate immunity. Front Immunol 2018; 9: Articel 1853
- 14 Mroz MS, Keating N, Ward JB. et al. Farnesoid X receptor agonists attenuate colonic epithelial secretory function and prevent experimental diarrhoea in vivo. Gut 2014; 63: 808-817
- 15 Mölgaard J, von Schenck H, Olsson AG. Comparative effects of simvastatin and cholestyramine in treatment of patients with hypercholesterolaemia. Eur J Clin Pharmacol 1989; 36: 455-460
- 16 Buchwald H, Varco RL, Matts JP. et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med 1990; 323: 946-955
- 17 Watanabe M, Houten SM, Wang L. et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 2004; 113: 1408-1418
- 18 Watanabe M, Houten SM, Mataki C. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439: 484-489
- 19 Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007; 293: E444-E452
- 20 Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol 2013; 10: 24-36
- 21 Teodoro JS, Zouhar P, Flachs P. et al. Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice. Internat J Obes (Lond) 2014; 38: 1027-1034
- 22 Zietak M, Kozak LP. Bile acids induce uncoupling protein 1-dependent thermogenesis and stimulate energy expenditure at thermoneutrality in mice. Am J Physiol Endocrinol Metab 2016; 310: E346-E354
- 23 Schönfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res 2016; 57: 943-854
- 24 Boulangé CL, Neves AL, Chilloux J. et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 2016; 8: 42
- 25 Chilloux J, Neves AL, Boulangé CL. et al. The microbial-mammalian metabolic axis: a critical symbiotic relationship. Curr Opin Clin Nutr Metab Care 2016; 19: 250-256
- 26 Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 2009; 15: 1546-1558
- 27 David LA, Maurice CF, Carmody RN. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505: 559-563
- 28 Wu GD, Chen J, Hoffmann C. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334: 105-108
- 29 Thaiss CA, Zeevi D, Levy M. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014; 159: 514-529
- 30 Forslund K, Hildebrand F, Nielsen T. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528: 262-266
- 31 Yokota A, Fukiya S, Islam KB. et al. Is bile acid a determinant of the gut microbiota on a high-fat diet?. Gut Microbes 2012; 3: 455-459
- 32 Long SL, Gahan CGM, Joyce SA. Interactions between gut bacteria and bile in health and disease. Mol Aspects Med 2017; 56: 54-65
- 33 Islam KB, Fukiya S, Hagio M. et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 2011; 141: 1773-1781
- 34 Inagaki T, Moschetta A, Lee YK. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 2006; 103: 3920-3925
- 35 Ooi LG, Ahmad R, Yuen KH. et al. Lactobacillus gasseri [corrected] CHO-220 and inulin reduced plasma total cholesterol and low-density lipoprotein cholesterol via alteration of lipid transporters. J Dairy Sci 2010; 93: 5048-5058
- 36 Joyce SA, MacSharry J, Casey PG. et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci U S A 2014; 111: 7421-7426
- 37 Cao H, Xu M, Dong W. et al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer 2017; 140: 2545-2556
- 38 Behr C, Slopianka M, Haake V. et al. Analysis of metabolome changes in the bile acid pool in feces and plasma of antibiotic-treated rats. Toxicol Appl Pharmacol 2019; 363: 79-87
- 39 Wietholtz H, Marschall HU, Sjövall J. et al. Stimulation of bile acid 6 alpha-hydroxylation by rifampin. J Hepatol 1996; 24: 713-718
- 40 Cani PD, Amar J, Iglesias MA. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761-1772
- 41 Guo C, Qi H, Yu Y. et al. The G-Protein-Coupled Bile Acid Receptor Gpbar1 (TGR5) Inhibits Gastric Inflammation Through Antagonizing NF-κB Signaling Pathway. Front Pharmacol 2015; 6: 287
- 42 Wang YD, Chen WD, Yu D. et al. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology 2011; 54: 1421-1432
- 43 Sung JJ, Go MY. Reversible Kupffer cell suppression in biliary obstruction is caused by hydrophobic bile acids. J Hepatol 1999; 30: 413-418
- 44 Calmus Y, Poupon R. Shaping macrophages function and innate immunity by bile acids: mechanisms and implication in cholestatic liver diseases. Clin Res Hepatol Gastroenterol 2014; 38: 550-556
- 45 Ley RE, Bäckhed F, Turnbaugh P. et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005; 102: 11070-11075
- 46 Ridaura VK, Faith JJ, Rey FE. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341: 1241214-1-1241214-10
- 47 Turnbaugh PJ, Ley RE, Mahowald MA. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027-1031
- 48 Albaugh VL, Banan B, Ajouz H. et al. Bile acids and bariatric surgery. Mol Aspects Med 2017; 56: 75-89
- 49 Li F, Jiang C, Krausz KW. et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 2013; 4: 2384
- 50 Seeley RJ, Chambers AP, Sandoval DA. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab 2015; 21: 369-378
- 51 Kaska L, Sledzinski T, Chomiczewska A. et al. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. WJG 2016; 22: 8698-8719
- 52 Patti ME, Houten SM, Bianco AC. et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity 2009; 17: 1671-1677
- 53 Wang W, Cheng Z, Wang Y. et al. Role of bile acids in bariatric surgery. Front Physiol 2019; 10: 374
- 54 Potthoff MJ, Potts A, He T. et al. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liver Physiol 2013; 304: G371-G380
- 55 Cariou B, Chetiveaux M, Zaïr Y. et al. Fasting plasma chenodeoxycholic acid and cholic acid concentrations are inversely correlated with insulin sensitivity in adults. Nutr Metab (Lond) 2011; 8: 48
- 56 Shao T, Yang YX. Cholecystectomy and the risk of colorectal cancer. Am J Gastroenterol 2005; 100: 1813-1820
- 57 Salo M, Eskola J. Immunosuppression after cholecystectomy. Acta Anaesthesiol Scand 1977; 21: 509-516
- 58 Thomas C, Pellicciari R, Pruzanski M. et al. Targeting bile-acid signalling for metabolic diseases. Nat RevDrug Discov 2008; 7: 678-693
- 59 Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol 2014; 11: 55-67
- 60 Leuschner U, Manns MP, Eisebitt R. Ursodeoxycholic acid in the therapy for primary biliary cirrhosis: effects on progression and prognosis. Z Gastroenterol 2005; 43: 1051-1059