Subscribe to RSS
DOI: 10.1055/a-1072-7195
Optoakustische Bildgebung – Licht rein, Schall raus?
Optoacustic Imaging – from Light to Sound? Die Autoren wurden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Gottfried Wilhelm Leibniz Preises (NT3/10-1) und des Sonderforschungsbereichs SFB824, Teilprojekt B10, gefördert.Zusammenfassung
Die optoakustische Bildgebung ist eine neuartige Bildgebungsmodalität, welche auf der Aufzeichnung und Verarbeitung von Ultraschallsignalen basiert, die im Gewebe durch Absorption von Laserlicht entstehen. Die Methode vereint guten, auf Lichtabsorption beruhenden Kontrast mit hoher Eindringtiefe und ermöglicht sowohl morphologische als auch molekulare und funktionelle Bildgebung. Sie kann mit oder ohne Kontrastmittel eingesetzt werden und ist frei von ionisierender Strahlung. Darüber hinaus ist die Technik skalierbar und kann somit zur makroskopischen, mesoskopischen und mikroskopischen Bildgebung verwendet werden.
In den letzten Jahren wurden eine Reihe verschiedener Systeme zur optoakustischen Bildgebung entwickelt und in vielfältigen Bereichen der präklinischen und klinischen Forschung eingesetzt. In der Dermatologie zeigten sich vielversprechende Anwendungsgebiete der Optoakustik insbesondere in der Untersuchung von Melanomen, Wächterlymphknoten und nicht-melanozytärem Hautkrebs sowie in der Charakterisierung von entzündlichen Hauterkrankungen.
In diesem Review sollen die technischen Grundlagen der optoakustischen Bildgebung erläutert sowie der derzeitige Stand der Forschung hinsichtlich Anwendungsbereiche makroskopischer, mesoskopischer und mikroskopischer optoakustischer Systeme beschrieben und diskutiert werden.
Abstract
Optoacoustic imaging is a novel imaging modality based on the acquisition and processing of ultrasound signals generated by absorption of laser light within tissue. This method combines optical absorption contrast with high contrast deep in tissue and allows for morphological as well as molecular and functional imaging. Optoacoustic imaging can be performed label free or with contrast dyes and is non-ionizing. The technique is furthermore scalable which means that it can be used for macroscopic, mesoscopic, and microscopic imaging.
In recent years several optoacoustic systems have been developed and used in a variety of fields in both preclinical and clinical research. Promising fields of application in dermatology include the examination of melanomas, sentinel lymph nodes and non-melanoma skin cancer as well as the characterization of inflammatory skin diseases.
In this review we explain the technical basics of optoacoustic imaging and describe and discuss the current state of research in macroscopic, mesoscopic, and microscopic optoacoustic systems.
* Gleichwertiger Beitrag
Publication History
Article published online:
05 March 2020
© Georg Thieme Verlag KG
Stuttgart · New York
-
Literatur
- 1 Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods 2010; 7: 603-614
- 2 Ntziachristos V, Razansky D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev 2010; 110: 2783-2794
- 3 Steinberg I, Huland DM, Vermesh O. et al. Photoacoustic clinical imaging. Photoacoustics 2019; 14: 77-98
- 4 Weber J, Beard PC, Bohndiek SE. Contrast agents for molecular photoacoustic imaging. Nature Methods 2016; 13: 639-650
- 5 Schellenberg MW, Hunt HK. Hand-held optoacoustic imaging: A review. Photoacoustics 2018; 11: 14-27
- 6 Masthoff M, Helfen A, Claussen J. et al. Multispectral optoacoustic tomography of systemic sclerosis. J Biophotonics 2018; 11: e201800155
- 7 Diot G, Metz S, Noske A. et al. Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer. Clin Cancer Res 2017; 23: 6912-6922
- 8 Chuah SY, Attia ABE, Ho CJH. et al. Volumetric Multispectral Optoacoustic Tomography for 3-Dimensional Reconstruction of Skin Tumors: A Further Evaluation with Histopathologic Correlation. J Invest Dermatol 2019; 139: 481-485
- 9 Stoffels I, Jansen P, Petri M. et al. Assessment of Nonradioactive Multispectral Optoacoustic Tomographic Imaging With Conventional Lymphoscintigraphic Imaging for Sentinel Lymph Node Biopsy in Melanoma. JAMA network open 2019; 2: e199020
- 10 Stoffels I, Morscher S, Helfrich I. et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci Transl Med 2015; 7: 317ra199
- 11 Aguirre J, Schwarz M, Garzorz N. et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat Biomed Eng 2017; 1: 496
- 12 Hindelang B, Aguirre J, Schwarz M. et al. Non-invasive imaging in dermatology and the unique potential of raster-scan optoacoustic mesoscopy. J Eur Acad Dermatol Venereol 2019; 33: 1051-1061
- 13 Berezhnoi A, Aguirre J, Hindelang B. et al. Optical features of human skin revealed by optoacoustic mesoscopy in the visible and short-wave infrared regions. Opt Lett 2019; 44: 4119-4122
- 14 Schwarz M, Buehler A, Aguirre J. et al. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo. J Biophotonics 2016; 9: 55-60
- 15 Li X, Dinish US, Aguirre J. et al. Optoacoustic mesoscopy analysis and quantitative estimation of specific imaging metrics in Fitzpatrick skin phototypes II to V. J Biophotonics 2019; 12: e201800442
- 16 Yew YW, Dinish US, Choi ECE. et al. Investigation of Morphological, Vascular and Biochemical Changes in the Skin of an Atopic Dermatitis (AD) Patient in Response to Dupilumab Using Raster Scanning Optoacoustic Mesoscopy (RSOM) and Handheld Confocal Raman Spectroscopy (CRS). J Dermatol Sci 2019; 95: 123-125
- 17 Aguirre J, Hindelang B, Berezhnoi A. et al. Assessing nailfold microvascular structure with ultra-wideband raster-scan optoacoustic mesoscopy. Photoacoustics 2018; 10: 31-37
- 18 Omar M, Schwarz M, Soliman D. et al. Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM). Neoplasia 2015; 17: 208-214
- 19 Berezhnoi A, Schwarz M, Buehler A. et al. Assessing hyperthermia-induced vasodilation in human skin in vivo using optoacoustic mesoscopy. J Biophotonics 2018; 11: e201700359
- 20 Aguirre J, Berezhnoi A, He H. et al. Motion Quantification and Automated Correction in Clinical RSOM. IEEE T Med Imaging 2019; 38: 1340-1346
- 21 van Nguyen P, Li Y, Aaberg M. et al. In Vivo 3D Imaging of Retinal Neovascularization Using Multimodal Photoacoustic Microscopy and Optical Coherence Tomography Imaging. J Imaging 2018; 4
- 22 Xiao M, Dai C, Li L. et al. Evaluation of Retinal Pigment Epithelium and Choroidal Neovascularization in Rats Using Laser-Scanning Optical-Resolution Photoacoustic Microscopy. Ophthalmic Res 2019; 1-13
- 23 Xu Z, Sun N, Cao R. et al. Cortex-wide multiparametric photoacoustic microscopy based on real-time contour scanning. Neurophotonics 2019; 6: 35012
- 24 Seeger M, Westmeyer G, Ntziachristos V. In-vivo hybrid microscopy of small model organisms. In: Ntziachristos V, Zemp R. Hrsg. Opto-Acoustic Methods and Applications in Biophotonics IV. 24 – 25 June 2019, Munich, Germany. Bellingham, Washington: SPIE; 2019: 21
- 25 Rao B, Leng X, Zeng Y. et al. Optical Resolution Photoacoustic Microscopy of Ovary and Fallopian Tube. Sci Rep 2019; 9: 14306
- 26 Zhou H-C, Chen N, Zhao H. et al. Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy. Photoacoustics 2019; 15: 100143
- 27 Jin T, Guo H, Jiang H. et al. Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging. Opt Lett 2017; 42: 4434-4437
- 28 Moothanchery M, Seeni RZ, Xu C. et al. In vivo studies of transdermal nanoparticle delivery with microneedles using photoacoustic microscopy. Biomed Opt Express 2017; 8: 5483-5492
- 29 Park K, Kim JY, Lee C. et al. Handheld Photoacoustic Microscopy Probe. Sci Rep 2017; 7: 13359