Subscribe to RSS
DOI: 10.1055/a-1090-0408
Rekonvaleszentenplasma zur Behandlung von schwerem COVID-19: Rationale und Design einer randomisierten, offenen klinischen Studie von Rekonvaleszentenplasma verglichen mit bestmöglicher supportiver Behandlung (CAPSID-Studie)
Convalescent Plasma for Treatment of Severe COVID-19: Rationale and Designing of a Randomized, Open-Label Clinical Trial of Convalescent Plasma Compared to Best Supportive Care (CAPSID Trial)Zusammenfassung
Rekonvaleszentenplasma wurde bei Patienten mit akuten, viralen respiratorischen Erkrankungen mit schwerem Verlauf eingesetzt (SARS- oder MERS-Coronavirus, Influenza H1N1, H5N1). Diese Studien erbrachten Hinweise auf eine Reduktion der Viruslast, einer Verkürzung des Krankenhausaufenthalts und eine Reduktion der Mortalität durch Rekonvaleszentenplasma. Die Wirkung konnte jedoch nicht abschließend belegt werden, da es sich nicht um randomisierte Studien handelte. Nach einer SARS-CoV-2-Infektion kommt es bei den meisten Patienten zu einer raschen Bildung von neutralisierenden Antikörpern. Wegen der pandemischen Entwicklung gibt es eine wachsende Zahl Genesener mit neutralisierenden Antikörpern, die als potenzielle Spender in Betracht kommen. Wir konzipierten eine prospektive, randomisierte Studie, um die Wirksamkeit und Sicherheit von Rekonvaleszentenplasma zur Therapie von schwerem COVID-19 und dessen Wirkmechanismus zu untersuchen (CAPSID-Studie). In diesem Beitrag werden die Rationale und das Design der Studie vorgestellt.
Abstract
Convalescent plasma therapy was administered in patients with acute, viral respiratory disorders with severe clinical course (SARS- or MERS coronavirus, influenza H1N1, H5N1). These studies suggested that convalescent plasma is likely to improve viral clearance, reduce the length of hospital stay and reduce mortality and appeared to be safe. However, since controlled randomized trials were lacking only low-quality evidence was available. Most patients mount a strong humoral immune response early in the course of a SARS-CoV-2 infection, including neutralizing antibodies. Due to the pandemic an increasing number of convalescent patients who are potential donors for SARS-CoV-2 convalescent plasma will be available. We designed a prospective randomized clinical trial to study the safety and efficacy of convalescent plasma for treatment of severe COVID-19 and its mechanism of action (CAPSID trial). Here we present the rationale for this trial and major aspects of the study outline.
Schlüsselwörter
SARS-CoV-2-Infektion - COVID-19 - Rekonvaleszentenplasma - randomisierte klinische PrüfungPublication History
Article published online:
25 August 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Stuttgart · New York
-
Literatur
- 1 Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5: 536-544
- 2 Davis JS, Ferreira D, Denholm JT. et al. Clinical trials for the prevention and treatment of COVID-19: current state of play. Med J Aust 2020; DOI: 10.5694/mja2.50673.
- 3 Beigel JH, Tomashek KM, Dodd LE. et al. Remdesivir for the Treatment of Covid-19 – Preliminary Report. N Engl J Med 2020; DOI: 10.1056/NEJMoa2007764.
- 4 Grein J, Ohmagari N, Shin D. et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med 2020; 382: 2327-2336
- 5 Wang Y, Zhang D, Du G. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395: 1569-1578
- 6 Horby P, Lim WS, Emberson J. et al. Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report. medRxiv 2020; DOI: 10.1101/2020.06.22.20137273.
- 7 Johnson RM, Vinetz JM. Dexamethasone in the management of covid-19. BMJ 2020; 370: m2648 doi:10.1136/bmj.m2648
- 8 Spyropoulos AC, Levy JH, Ageno W. et al. Scientific and Standardization Committee Communication: Clinical Guidance on the Diagnosis, Prevention and Treatment of Venous Thromboembolism in Hospitalized Patients with COVID-19. J Thromb Haemost 2020; DOI: 10.1111/jth.14929.
- 9 OʼCallaghan KP, Blatz AM, Offit PA. Developing a SARS-CoV-2 Vaccine at Warp Speed. JAMA 2020; DOI: 10.1001/jama.2020.12190.
- 10 Paul-Ehrlich-Institut. Funk MB, Heiden M, Müller S. Hämovigilanz-Bericht des Paul-Ehrlich-Instituts 2016/17: Auswertung der Meldungen von Reaktionen und Zwischenfällen nach § 63i AMG; 2019. Im Internet (Stand: 23.09.2019): https://www.pei.de/SharedDocs/Downloads/DE/newsroom/pflichtberichte/haemovigilanzberichte/haemovigilanz-bericht-2016-2017.pdf?__blob=publicationFile&v=3
- 11 Hsueh PR, Huang LM, Chen PJ. et al. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin Microbiol Infect 2004; 10: 1062-1066
- 12 Huang LR, Chiu CM, Yeh SH. et al. Evaluation of antibody responses against SARS coronaviral nucleocapsid or spike proteins by immunoblotting or ELISA. J Med Virol 2004; 73: 338-346
- 13 Woo PC, Lau SK, Wong BH. et al. Longitudinal profile of immunoglobulin G (IgG), IgM, and IgA antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus. Clin Diagn Lab Immunol 2004; 11: 665-668
- 14 Chen W, Xu Z, Mu J. et al. Antibody response and viraemia during the course of severe acute respiratory syndrome (SARS)-associated coronavirus infection. J Med Microbiol 2004; 53: 435-438
- 15 Chen X, Zhou B, Li M. et al. Serology of severe acute respiratory syndrome: implications for surveillance and outcome. J Infect Dis 2004; 189: 1158-1163
- 16 Mo H, Zeng G, Ren X. et al. Longitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significance. Respirology 2006; 11: 49-53
- 17 Shi Y, Wan Z, Li L. et al. Antibody responses against SARS-coronavirus and its nucleocaspid in SARS patients. J Clin Virol 2004; 31: 66-68
- 18 Qiu M, Shi Y, Guo Z. et al. Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect 2005; 7: 882-889
- 19 Lee N, Chan PK, Ip M. et al. Anti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndrome. J Clin Virol 2006; 35: 179-184
- 20 Zhao J, Wang W, Wang W. et al. Comparison of immunoglobulin G responses to the spike and nucleocapsid proteins of severe acute respiratory syndrome (SARS) coronavirus in patients with SARS. Clin Vaccine Immunol 2007; 14: 839-846
- 21 Yang Z, Wang S, Li Q. et al. Determining SARS sub-clinical infection: a longitudinal seroepidemiological study in recovered SARS patients and controls after an outbreak in a general hospital. Scand J Infect Dis 2009; 41: 507-510
- 22 Li G, Fan Y, Lai Y. et al. Coronavirus infections and immune responses. J Med Virol 2020; 92: 424-432
- 23 Park WB, Perera RA, Choe PG. et al. Kinetics of Serologic Responses to MERS Coronavirus Infection in Humans, South Korea. Emerg Infect Dis 2015; 21: 2186-2189
- 24 Choe PG, Perera RAPM, Park WB. et al. MERS-CoV Antibody Responses 1 Year after Symptom Onset, South Korea, 2015. Emerg Infect Dis 2017; 23: 1079-1084
- 25 Wölfel R, Corman VM, Guggemos W. et al. Virological assessment of hospitalized cases of coronavirus disease 2019. Nature 2020; 581: 465-469
- 26 Guo L, Ren L, Yang S. et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis 2020; DOI: 10.1093/cid/ciaa310.
- 27 Robbiani DF, Gaebler C, Muecksch F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 2020; DOI: 10.1038/s41586-020-2456-9.
- 28 Liu W, Liu L, Kou G. et al. Evaluation of Nucleocapsid and Spike Protein-Based Enzyme-Linked Immunosorbent Assays for Detecting Antibodies against SARS-CoV-2. J Clin Microbiol 2020; DOI: 10.1128/JCM.00461-20.
- 29 Jahrsdorfer B, Kroschel J, Ludwig C. et al. Independent side-by-side validation and comparison of four serological platforms for SARS-CoV-2 antibody testing. 2020 [submitted]
- 30 Seydoux E, Homad LJ, MacCamy AJ. et al. Analysis of a SARS-CoV-2-Infected Individual Reveals Development of Potent Neutralizing Antibodies with Limited Somatic Mutation. Immunity 2020; DOI: 10.1016/j.immuni.2020.06.001.
- 31 Mair-Jenkins J, Saavedra-Campos M, Baillie JK. et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis 2015; 211: 80-90
- 32 Zhou XZ, Zhao M, Wang FS. et al. [Epidemiologic features, clinical diagnosis and therapy of first cluster of patients with severe acute respiratory syndrome in Beijing area]. Zhonghua Yi Xue Za Zhi 2003; 83: 1018-1022
- 33 Soo YO, Cheng Y, Wong R. et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect 2004; 10: 676-678
- 34 Cheng Y, Wong R, Soo YO. et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005; 24: 44-46
- 35 Wong SS, Yuen KY. The management of coronavirus infections with particular reference to SARS. J Antimicrob Chemother 2008; 62: 437-441
- 36 Nie QH, Luo XD, Hui WL. Advances in clinical diagnosis and treatment of severe acute respiratory syndrome. World J Gastroenterol 2003; 9: 1139-1143
- 37 Wong VW, Dai D, Wu AK. et al. Treatment of severe acute respiratory syndrome with convalescent plasma. Hong Kong Med J 2003; 9: 199-201
- 38 Yeh KM, Chiueh TS, Siu LK. et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother 2005; 56: 919-922
- 39 Lai ST. Treatment of severe acute respiratory syndrome. Eur J Clin Microbiol Infect Dis 2005; 24: 583-591
- 40 Arabi YM, Hajeer AH, Luke T. et al. Feasibility of Using Convalescent Plasma Immunotherapy for MERS-CoV Infection, Saudi Arabia. Emerg Infect Dis 2016; 22: 1554-1561
- 41 Dodd LE, Follmann D, Proschan M. et al. A meta-analysis of clinical studies conducted during the West Africa Ebola virus disease outbreak confirms the need for randomized control groups. Sci Transl Med 2019; 11: 11-520
- 42 Katzelnick LC, Gresh L, Halloran ME. et al. Antibody-dependent enhancement of severe dengue disease in humans. Science 2017; 358: 929-932
- 43 Wan Y, Shang J, Sun S. et al. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J Virol 2020; DOI: 10.1128/JVI.02015-19.
- 44 Dzik S. COVID-19 Convalescent Plasma: Now Is the Time for Better Science. Transfus Med Rev 2020; DOI: 10.1016/j.tmrv.2020.04.002.
- 45 Liu L, Wei Q, Lin Q. et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 2019; DOI: 10.1172/jci.insight.123158.
- 46 Vorstand der Bundesärztekammer auf Empfehlung seines Wissenschaftlichen Beirats und im Einvernehmen mit dem Paul-Ehrlich-Institut. Richtlinie zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Richtlinie Hämotherapie). Köln: Deutscher Ärzteverlag; 2017
- 47 Duan K, Liu B, Li C. et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A 2020; 117: 9490-9496
- 48 Shen C, Wang Z, Zhao F. et al. Treatment of 5 Critically Ill Patients with COVID-19 with Convalescent Plasma. JAMA 2020; 323: 1582-1589
- 49 Zeng QL, Yu ZJ, Gou JJ. et al. Effect of Convalescent Plasma Therapy on Viral Shedding and Survival in Patients with Coronavirus Disease 2019. J Infect Dis 2020; 222: 38-43
- 50 Joyner MJ, Wright RS, Fairweather D. et al. Early safety indicators of COVID-19 convalescent plasma in 5,000 patients. J Clin Invest 2020; DOI: 10.1172/JCI140200.
- 51 Liu STH, Lin HM, Baine I. et al. Convalescent plasma treatment of severe COVID-19: A matched control study. medRxiv 2020; DOI: 10.1101/2020.05.20.20102236.