Exp Clin Endocrinol Diabetes 2020; 128(06/07): 414-422
DOI: 10.1055/a-1108-1456
Mini-Review

Allan-Herndon-Dudley-Syndrome: Considerations about the Brain Phenotype with Implications for Treatment Strategies

Heiko Krude
1   Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin, Berlin, Germany
,
Heike Biebermann
1   Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin, Berlin, Germany
,
Markus Schuelke
2   Department of Neuropediatrics, Charité - Universitätsmedizin, Berlin, Germany
,
Timo D. Müller
3   Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Germany
5   German Center for Diabetes Research (DZD), Neuherberg, Germany
6   Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
,
Matthias Tschöp
4   Division of Metabolic Diseases, Technische Universität München, Munich, Germany
5   German Center for Diabetes Research (DZD), Neuherberg, Germany
7   Helmholtz Zentrum München, Germany
› Author Affiliations

Abstract

Despite its first description more than 75 years ago, effective treatment for “Allan-Herndon-Dudley-Syndrome (AHDS)”, an X-linked thyroid hormone transporter defect, is unavailable. Mutations in the SLC16A2 gene have been discovered to be causative for AHDS in 2004, but a comprehensive understanding of the function of the encoded protein, monocarboxylate transporter 8 (MCT8), is incomplete. Patients with AHDS suffer from neurodevelopmental delay, as well as extrapyramidal (dystonia, chorea, athetosis), pyramidal (spasticity), and cerebellar symptoms (ataxia). This suggests an affection of the pyramidal tracts, basal ganglia, and cerebellum, most likely already during fetal brain development. The function of other brain areas relevant for mood, behavior, and vigilance seems to be intact. An optimal treatment strategy should thus aim to deliver T3 to these relevant structures at the correct time points during development. A potential therapeutic strategy meeting these needs might be the delivery of T3 via a “Trojan horse mechanism” by which T3 is delivered into target cells by a thyroid hormone transporter independent T3 internalization.



Publication History

Received: 01 October 2019
Received: 17 January 2020

Accepted: 28 January 2020

Article published online:
02 April 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Grüters A, Krude H. Detection and treatment of congenital hypothyroidism. Nat Rev Endocrinol 2011; 8: 104-113
  • 2 Aleksander PE, Brückner-Spieler M, Stoehr A-M. et al. Mean high-dose l-thyroxine treatment is efficient and safe to achieve a normal IQ in young adult patients with congenital hypothyroidism. J Clin Endocrinol Metab 2018; 103: 1459-1469
  • 3 Groeneweg S, van Geest FS, Peeters RP et al. Thyroid hormone transporters. Endocr Rev 2019; Im Internet: Im Internet: https://academic.oup.com/edrv/advance-article/doi/10.1210/endrev/bnz008/5637505
  • 4 Groeneweg S, Visser WE, Visser TJ. Disorder of thyroid hormone transport into the tissues. Best Pract Res Clin Endocrinol Metab 2017; 31: 241-253
  • 5 Bernal J, Guadaño-Ferraz A, Morte B. Thyroid hormone transporters—functions and clinical implications. Nat Rev Endocrinol 2015; 11: 406-417
  • 6 Verge CF, Konrad D, Cohen M. et al. Diiodothyropropionic Acid (DITPA) in the Treatment of MCT8 Deficiency. J Clin Endocrinol Metab 2012; 97: 4515-4523
  • 7 Groeneweg S, Peeters RP, Moran C. et al. Effectiveness and safety of the tri-iodothyronine analogue Triac in children and adults with MCT8 deficiency: An international, single-arm, open-label, phase 2 trial. Lancet Diabetes Endocrinol 2019; 7: 695-706
  • 8 Dumitrescu AM, Liao X-H, Weiss RE. et al. Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (Mct) 8-Deficient mice. Endocrinology 2006; 147: 4036-4043
  • 9 Trajkovic M, Visser TJ, Mittag J. et al. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest 2007; 117: 627-635
  • 10 Müller J, Heuer H. Expression pattern of thyroid hormone transporters in the postnatal mouse brain. Front Endocrinol 2014; 5: Im Internet: https://www.frontiersin.org/articles/10.3389/fendo.2014.00092/full
  • 11 Mayerl S, Müller J, Bauer R. et al. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest 2014; 124: 1987-1999
  • 12 Gika AD, Siddiqui A, Hulse AJ. et al. White matter abnormalities and dystonic motor disorder associated with mutations in the SLC16A2 gene. Dev Med Child Neurol 2010; 52: 475-482
  • 13 Azzolini S, Nosadini M, Balzarin M. et al. Delayed myelination is not a constant feature of Allan–Herndon–Dudley syndrome: Report of a new case and review of the literature. Brain Dev 2014; 36: 716-720
  • 14 Wilpert N-M, Krueger M, Opitz R et al. Spatiotemporal changes of cerebral monocarboxylate transporter 8 expression. Thyroid 2020; accepted
  • 15 López-Espíndola D, García-Aldea Á, Gómez de la Riva I. et al. Thyroid hormone availability in the human fetal brain: Novel entry pathways and role of radial glia. Brain Struct Funct 2019; 224: 2103-2119
  • 16 López-Espíndola D, Morales-Bastos C, Grijota-Martínez C. et al. Mutations of the thyroid hormone transporter MCT8 cause prenatal brain damage and persistent hypomyelination. J Clin Endocrinol Metab 2014; 99: E2799-E2804
  • 17 Schwartz CE, Ulmer J, Brown A. et al. Allan-Herndon syndrome. II. Linkage to DNA markers in Xq21. Am J Hum Genet 1990; 47: 454-458
  • 18 Allan W, Herndon N, Dudley FC. Some examples of the inheritance of mental deficiency: Apparently sex-linked idiocy and microcephaly. Am J Ment Defic 1944; 4: 325-334
  • 19 Schwartz CE, May MM, Carpenter NJ. et al. Allan-Herndon-Dudley Syndrome and the Monocarboxylate Transporter 8 (MCT8) Gene. Am J Hum Genet 2005; 77: 41-53
  • 20 Holden KR, Zuñiga OF, May MM. et al. X-Linked MCT8 gene mutations: Characterization of the pediatric neurologic phenotype. J Child Neurol 2005; 20: 852-857
  • 21 Holstege G. Chapter 2 The somatic motor system. In Holstege G, Bandler R, Saper CB. Hrsg Progress in Brain Research. Elsevier; 1996: 9-26 Im Internet: http://www.sciencedirect.com/science/article/pii/S0079612308618567
  • 22 Trošt M. Dystonia update. Curr Opin Neurol 2003; 16: 495-500
  • 23 Wichmann T, Bergman H, DeLong MR. Basal ganglia, movement disorders and deep brain stimulation: Advances made through non-human primate research. J Neural Transm 2018; 125: 419-430
  • 24 Pavone P, Praticò AD, Pavone V. et al. Ataxia in children: Early recognition and clinical evaluation. Ital J Pediatr 2017; 43: 6
  • 25 Ono E, Ariga M, Oshima S. et al. Three novel mutations of the MCT8 (SLC16A2) gene: Individual and temporal variations of endocrinological and radiological features. Clin Pediatr Endocrinol 2016; 25: 23-35
  • 26 Blackstone C. Chapter 41 – Hereditary spastic paraplegia. In: Geschwind DH, Paulson HL, Klein C. Hrsg Handbook of Clinical Neurology. Elsevier; 2018: 633-652. Im Internet: http://www.sciencedirect.com/science/article/pii/B9780444640765000417
  • 27 Gencic S, Abuelo D, Ambler M. et al. Pelizaeus-Merzbacher disease: An X-linked neurologic disorder of myelin metabolism with a novel mutation in the gene encoding proteolipid protein. Am J Hum Genet 1989; 45: 435-442
  • 28 Uhlenberg B, Schuelke M, Rüschendorf F. et al. Mutations in the gene encoding gap junction protein α12 (Connexin 46.6) cause pelizaeus-merzbacher–like disease. Am J Hum Genet 2004; 75: 251-260
  • 29 Pérez-Brangulí F, Mishra HK, Prots I. et al. Dysfunction of spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia. Hum Mol Genet 2014; 23: 4859-4874
  • 30 Denton K, Mou Y, Xu C-C. et al. Impaired mitochondrial dynamics underlie axonal defects in hereditary spastic paraplegias. Hum Mol Genet 2018; 27: 2517-2530
  • 31 Mueller N, Sassa T, Morales-Gonzalez S. et al. De novo mutation in ELOVL1 causes ichthyosis, acanthosis nigricans, hypomyelination, spastic paraplegia, high frequency deafness and optic atrophy. J Med Genet 2019; 56: 164-175
  • 32 Sherwood NT, Sun Q, Xue M. et al. Drosophila spastin regulates synaptic microtubule networks and is required for normal motor function. PLOS Biol 2004; 2: e429
  • 33 Kyono Y, Subramani A, Ramadoss P. et al. Liganded thyroid hormone receptors transactivate the DNA methyltransferase 3a gene in mouse neuronal cells. Endocrinology 2016; 157: 3647-3657
  • 34 Cao X-Y, Jiang X-M, Dou Z-H. et al. Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N Engl J Med 1994; 331: 1739-1744
  • 35 Zimmermann MB. Iodine deficiency. Endocr Rev 2009; 30: 376-408
  • 36 Halpern J-P, Boyages SC, Maberly GF. et al. The neurology of endemic cretinism, a study of two endemias. Brain 1991; 114: 825-841
  • 37 Burrow GN, Fisher DA, Larsen PR. Maternal and Fetal Thyroid Function. N Engl J Med 1994; 331: 1072-1078
  • 38 Vulsma T, Gons MH, de Vijlder JJM. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N Engl J Med 1989; 321: 13-16
  • 39 Smith CD, Grondin R, LeMaster W. et al. Reversible cognitive, motor, and driving impairments in severe hypothyroidism. Thyroid 2014; 25: 28-36
  • 40 Khedr EM, Toony LFE, Tarkhan MN. et al. Peripheral and central nervous system alterations in hypothyroidism: electrophysiological findings. Neuropsychobiology 2000; 41: 88-94
  • 41 Torres CF, Moxley RT. Hypothyroid neuropathy and myopathy: Clinical and electrodiagnostic longitudinal findings. J Neurol 1990; 237: 271-274
  • 42 Wémeau JL, Pigeyre M, Proust-Lemoine E. et al. Beneficial effects of propylthiouracil plus l-Thyroxine treatment in a patient with a mutation in MCT8. J Clin Endocrinol Metab 2008; 93: 2084-2088
  • 43 Groeneweg S, Peeters RP, Visser TJ. et al. Triiodothyroacetic acid in health and disease. J Endocrinol 2017; 234: R99-R121
  • 44 Kersseboom S, Horn S, Visser WE. et al. In vitro and mouse studies support therapeutic utility of triiodothyroacetic acid in MCT8 deficiency. Mol Endocrinol Baltim Md 2015; me00009999
  • 45 Di Cosmo C, Liao X-H, Dumitrescu AM. et al. A thyroid hormone analog with reduced dependence on the monocarboxylate transporter 8 for tissue transport. Endocrinology 2009; 150: 4450-4458
  • 46 Bárez-López S, Obregon MJ, Martínez-de-Mena R. et al. Effect of triiodothyroacetic acid treatment in mct8 deficiency: A word of caution. Thyroid 2015; 26: 618-626
  • 47 Visser WE, Heuer H, Visser TJ. Triiodothyroacetic acid treatment in MCT8 deficiency: A word of nuance. Thyroid 2016; 26: 615-617
  • 48 Slavc I, Cohen-Pfeffer JL, Gururangan S. et al. Best practices for the use of intracerebroventricular drug delivery devices. Mol Genet Metab 2018; 124: 184-188
  • 49 Bárez-López S, Grijota-Martínez C, Liao XH. et al. Intracerebroventricular administration of the thyroid hormone analog TRIAC increases its brain content in the absence of MCT8. PLoS One 2019; 14 (12) e0226017
  • 50 Iwayama H, Liao X-H, Braun L. et al. Adeno Associated Virus 9–Based Gene Therapy Delivers a Functional Monocarboxylate Transporter 8, Improving Thyroid Hormone Availability to the Brain of Mct8-Deficient Mice. Thyroid 2016; 26: 1311-1319
  • 51 Finan B, Yang B, Ottaway N. et al. Targeted estrogen delivery reverses the meta-bolic syndrome. Nat Med 2012; 18: 1847-1856
  • 52 Quarta C, Clemmensen C, Zhu Z. et al. Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity. Cell Metab 2017; 26 (04) 620-632
  • 53 Finan B, Clemmensen C, Zhu Z. et al. Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell 2016; 167 (03) 843-857
  • 54 Müller TD, Finan B, Bloom SR. et al. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30: 72-130
  • 55 Daneman D, Howard NJ. Neonatal thyrotoxicosis: Intellectual impairment and cranio-synostosis in later years. J Pediatr 1980; 97: 257-259
  • 56 Fischer J, Kleinau G, Müller A. et al. Modulation of monocarboxylate transporter 8 oligomerization by specific pathogenic mutations. J Mol Endocrinol 2015; 54: 39-50