RSS-Feed abonnieren
DOI: 10.1055/a-1118-9341
Microvascular Effects of Echinodorus grandiflorus on Cardiovascular Disorders
Publikationsverlauf
received 08. Oktober 2019
revised 03. Februar 2020
accepted 12. Februar 2020
Publikationsdatum:
13. März 2020 (online)
Abstract
Echinodorus grandiflorus is a semiaquatic plant native to Brazil and belongs to the Alismataceae family. Infusion preparations of the leaves of this plant are often used due to its diuretic, blood pressure lowering, and anti-inflammatory properties. Our aim was to investigate the effects of chronic treatment with the crude hydroalcoholic extract of E. grandiflorus on central and peripheral microvascular changes induced in a model of hypertension and diabetes. The hemodynamic and microvascular effects of E. grandiflorus extract (50, 100, or 200 mg/kg/day for 28 days) or the isolated major diterpene from E. grandiflorus (3 to 10 mg/kg i. v.) were evaluated in spontaneously hypertensive rats using tail plethysmography and intravital fluorescence videomicroscopy, respectively, and were compared to vehicle-treated normotensive Wistar-Kyoto rats. We also investigated the protective effects of chronic treatment with E. grandiflorus (100 mg/kg/day) in brain capillary density and leukocyte-endothelium interactions on the brain vessels of DM-spontaneously (DM: diabetes mellitus) hypertensive rats. Chronically treating spontaneously hypertensive rats with increasing doses of crude hydroalcoholic E. grandiflorus extract resulted in significant dose-dependent reductions in systolic blood pressure and an anti-inflammatory effect on the brain microcirculation of DM-spontaneously hypertensive rat animals. Using laser speckle contrast imaging, we observed that intravenous administration of the major isolated clerodane diterpene metabolite (1 – 10 mg/kg) increased microvascular blood flow by 25% in spontaneously hypertensive rat skeletal muscle. The results of this study show that E. grandiflorus extracts can be useful in the prevention and reduction of microcirculatory damage in arterial hypertension and other diseases that involve microvascular dysfunction.
Key words
capillary rarefaction - microvascular dysfunction - intravital microscopy - hypertension - Echinodorus grandifloras - AlismataceaeSupporting Information
- Supporting Information
Supporting Information Appendix: Table 1S – 1H, 13CNMR and HMBC data of the diterpene 3,13-clerodien-16,15- olideo-2-one. Fig. 1S – Chemical structure of the clerodane diterpenoid (3,13-clerodien-16,15- olideo- 2-one). Fig. 2S – Selected 2D NMR HMBC data of 3,13-clerodien-16,15-olideo-2-one. Fig. 3S – Relative stereochemistry of 3,13-clerodien-16,15-olideo-2-one. Red arrows denote NOESY correlations. Fig. 4S – 1H-NMR spectra of diterpene diterpenoid 3,13-clerodien-16,15-olideo-2-one. Fig. 5S – 13C-NMR spectra of diterpene diterpenoid 3,13-clerodien-16,15-olideo-2-one. Fig. 6S – DEP-135-NMR spectra of diterpene diterpenoid 3,13-clerodien-16,15-olideo-2-one. Fig. 7S – HSQC-NMR spectra of diterpene diterpenoid 3,13-clerodien-16,15-olideo-2-one. Fig. 8S – HMBC-NMR spectra of diterpene diterpenoid 3,13-clerodien-16,15-olideo-2-one. Fig. 9S – NOESY-NMR spectra of diterpene diterpenoid 3,13-clerodien-16,15-olideo-2-one. Fig. 10S – GC-MS data of diterpene diterpenoid 3,13-clerodien-16,15-olideo-2-one. Fig. 11S – MS data of diterpene diterpenoid 3,13-clerodien-16,15-olideo-2-one.
-
References
- 1 World Health Organization. A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013. Available at: https://apps.who.int/iris/handle/10665/79059 Accessed May 10, 2019
- 2 Joffres M, Falaschetti E, Gillespie C, Robitaille C, Loustalot F, Poulter N, McAlister FA, Johansen H, Baclic O, Campbell N. Hypertension prevalence, awareness, treatment and control in national surveys from England, the USA and Canada, and correlation with stroke and ischaemic heart disease mortality: a cross-sectional study. BMJ Open 2013; 3: e003423
- 3 Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, Beyer AM. The human microcirculation: regulation of flow and beyond. Circ Res 2016; 118: 157-172
- 4 Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Rarefaction of skin capillaries in borderline essential hypertension suggests an early structural abnormality. Hypertension 1999; 34: 655-658
- 5 Chen II, Prewitt RL, Dowell RF. Microvascular rarefaction in spontaneously hypertensive rat cremaster muscle. Am J Physiol 1981; 241: H306-H310
- 6 Estato V, Obadia N, Carvalho-Tavares J, Freitas FS, Reis P, Castro-Faria Neto H, Lessa MA, Tibirica E. Blockade of the renin-angiotensin system improves cerebral microcirculatory perfusion in diabetic hypertensive rats. Microvasc Res 2013; 87: 41-49
- 7 Debbabi H, Uzan L, Mourad JJ, Safar M, Levy BI, Tibirica E. Increased skin capillary density in treated essential hypertensive patients. Am J Hypertens 2006; 19: 477-483
- 8 Teixeira K, Santos P, Zanette VC, Baldó S, Amaral PA. Medicinal plants that can cause changes in blood pressure and interactions with antihypertensive agents. Am J Ethnomed 2017; 4: 2-8
- 9 Garcia Ede F, de Oliveira MA, Godin AM, Ferreira WC, Bastos LF, Coelho Mde M, Braga FC. Antiedematogenic activity and phytochemical composition of preparations from Echinodorus grandiflorus leaves. Phytomedicine 2010; 18: 80-86
- 10 Prando TB, Barboza LN, Araújo Vde O, Gasparotto FM, de Souza LM, Lourenço EL, Gasparotto Junior A. Involvement of bradykinin B2 and muscarinic receptors in the prolonged diuretic and antihypertensive properties of Echinodorus grandiflorus (Cham. & Schltdl.) Micheli. Phytomedicine 2016; 23: 1249-1258
- 11 Lessa MA, Araujo CV, Kaplan MA, Pimenta D, Figueiredo MR, Tibirica E. Antihypertensive effects of crude extracts from leaves of Echinodorus grandiflorus . Fundam Clin Pharmacol 2008; 22: 161-168
- 12 Tibiriçá E, Almeida A, Caillleaux S, Pimenta D, Kaplan MA, Lessa MA, Figueiredo MR. Pharmacological mechanisms involved in the vasodilator effects of extracts from Echinodorus grandiflorus . J Ethnopharmacol 2007; 111: 50-55
- 13 Commission BP. Brazilian Pharmacopoeia. Brasília: ANVISA; 2010
- 14 Marc Y, Llorens-Cortes C. The role of the brain renin-angiotensin system in hypertension: implications for new treatment. Prog Neurobiol 2011; 95: 89-103
- 15 de Carvalho ES, Tirloni CAS, Palozi RAC, Schaedler MI, Guarnier LP, Silva AO, Mota JDS, Cardoso CAL, de Barros ME, Gasparotto Junior A. Endothelium-dependent effects of Echinodorus grandiflorus (Cham. & Schltdl.) Micheli mediated by M3-muscarinic and B2-bradykininergic receptors on peripheral vascular resistance and its modulatory effects on K+ channels in mesenteric vascular beds. Evid Based Complement Alternat Med 2019; 2019: 4109810
- 16 Hansen-Smith F, Greene AS, Cowley jr. AW, Lombard JH. Structural changes during microvascular rarefaction in chronic hypertension. Hypertension 1990; 15: 922-928
- 17 Struyker-Boudier HA, le Noble JL, Slaaf DW, Smits JF, Tangelder GJ. Microcirculatory changes in cremaster muscle during early spontaneous hypertension in the rat. J Hypertens Suppl 1988; 6: S185-S187
- 18 Evenwel RT, Kasbergen CM, Struyker-Boudier HA. Central and regional hemodynamics and plasma volume distribution during the development of spontaneous hypertension in rats. Clin Exp Hypertens Part A 1983; 5: 1511-1536
- 19 Schmid-Schonbein GW, Zweifach BW, DeLano FA, Chen PC. Microvascular tone in a skeletal muscle of spontaneously hypertensive rats. Hypertension 1987; 9: 164-171
- 20 Sabino B, Lessa MA, Nascimento AR, Rodrigues CA, Henriques M, Garzoni LR, Levy BI, Tibirica E. Effects of antihypertensive drugs on capillary rarefaction in spontaneously hypertensive rats: intravital microscopy and histologic analysis. J Cardiovasc Pharmacol 2008; 51: 402-409
- 21 Paiardi S, Rodella LF, De Ciuceis C, Porteri E, Boari GE, Rezzani R, Rizzardi N, Platto C, Tiberio GA, Giulini SM, Rizzoni D, Agabiti-Rosei E. Immunohistochemical evaluation of microvascular rarefaction in hypertensive humans and in spontaneously hypertensive rats. Clin Hemorheol Microcirc 2009; 42: 259-268
- 22 Hoffman WE, Miletich DJ, Albrecht RF. Maintenance of cerebral blood flow and metabolism during pharmacological hypotension in aged hypertensive rats. Neurobiol Aging 1982; 3: 101-104
- 23 Sokolova IA, Manukhina EB, Blinkov SM, Koshelev VB, Pinelis VG, Rodionov IM. Rarefication of the arterioles and capillary network in the brain of rats with different forms of hypertension. Microvasc Res 1985; 30: 1-9
- 24 Strandgaard S. Autoregulation of cerebral circulation in hypertension. Acta Neurol Scand Suppl 1978; 66: 1-82
- 25 Harper SL, Bohlen HG. Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats. Hypertension 1984; 6: 408-419
- 26 Kasama T, Miwa Y, Isozaki T, Odai T, Adachi M, Kunkel SL. Neutrophil-derived cytokines: potential therapeutic targets in inflammation. Curr Drug Targets Inflamm Allergy 2005; 4: 273-279
- 27 Jones AK, al-Janabi MA, Solanki K, Sobnack R, Greenwood A, Doyle DV, Britton KE, Huskisson EC. In vivo leukocyte migration in arthritis. Arthritis Rheum 1991; 34: 270-275
- 28 Khodadadi S, Zabihi NA, Niazmand S, Abbasnezhad A, Mahmoudabady M, Rezaee SA. Teucrium polium improves endothelial dysfunction by regulating eNOS and VCAM-1 genes expression and vasoreactivity in diabetic rat aorta. Biomed Pharmacother 2018; 103: 1526-1530
- 29 Norata GD, Marchesi P, Passamonti S, Pirillo A, Violi F, Catapano AL. Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice. Atherosclerosis 2007; 191: 265-271
- 30 Williamson G, Kay CD, Crozier A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Compr Rev Food Sci F 2018; 17: 1054-1112
- 31 Anilkumar K, Reddy GV, Azad R, Yarla NS, Dharmapuri G, Srivastava A, Kamal MA, Pallu R. Evaluation of anti-inflammatory properties of isoorientin isolated from tubers of Pueraria tuberosa . Oxid Med Cell Longev 2017; 2017: 5498054
- 32 Awang K, Abdullah NH, Hadi AH, Fong YS. Cardiovascular activity of labdane diterpenes from Andrographis paniculata in isolated rat hearts. J Biomed Biotechnol 2012; 2012: 876458
- 33 Tirapelli CR, Ambrosio SR, de Oliveira AM, Tostes RC. Hypotensive action of naturally occurring diterpenes: a therapeutic promise for the treatment of hypertension. Fitoterapia 2010; 81: 690-702
- 34 Kobayashi J, Sekiguchi M, Shimamoto S, Shigemori H, Ohsaki A. Echinophyllins C–F, new nitrogen-containing clerodane diterpenoids from Echinodorus macrophyllus . J Nat Prod 2000; 63: 1576-1579
- 35 Silva RM, Oliveira FA, Cunha KM, Maia JL, Maciel MA, Pinto AC, Nascimento NR, Santos FA, Rao VS. Cardiovascular effects of trans-dehydrocrotonin, a diterpene from Croton cajucara in rats. Vasc Pharmacol 2005; 43: 11-18
- 36 Costa M, Tanaka CM, Imamura PM, Marsaioli AJJP. Isolation and synthesis of a new clerodane from Echinodorus grandiflorus . Phytochemistry 1999; 50: 117-122