RSS-Feed abonnieren
DOI: 10.1055/a-1133-9301
Multiparametrische quantitative Magnetresonanztomografie bei Lebererkrankungen
Multiparametric Quantitative Magnetic Resonance Imaging in Liver DiseaseZusammenfassung
Die MRT wird routinemäßig bei Patienten mit einer Erkrankung der Leber zum Ausschluss oder zur Verlaufskontrolle einer strukturellen Parenchymveränderung eingesetzt. Durch spezielle MRT-Sequenzen und -Techniken lassen sich Eigenschaften der Leber bezüglich Funktion, Fibrosestadium, Fett- und Eisengehalt quantifizieren. Die MRT hilft sowohl bei der ersten Diagnostik eines Krankheitsbildes als auch bei der Überprüfung des Therapieansprechens.
Abstract
In clinical routine, invasive liver biopsy is considered to be the reference standard for clarifying the aetiology of an unclear liver disease, quantifying hepatic inflammation, steatosis hepatis or liver iron content and for graduation of liver fibrosis stage. However, this invasive procedure has a number of disadvantages and limitations. Liver fibrosis is the common final stage of many chronic liver diseases and may lead to liver cirrhosis. In principle, fibrotic changes of liver parenchyma are reversible, thus non-invasive early detection and characterization methods are of high clinical relevance.
Non-invasive diagnostic imaging methods – in particular multiparametric quantitative magnetic resonance imaging (MRI) – will be established in clinical practice for determining fat and iron content and estimation of liver function. The liver iron concentration can be determined quantitatively using signal intensity ratio (SIR)- method and the relaxometry method by determining R2 and R2* values. Using proton density fat fraction (PDFF) and magnetic resonance spectroscopy the fat content of the liver can be determined non-invasively. Gd-EOB-DTPA-enhanced MRI offers the possibility to estimate global as well as segmental liver function using T1 relaxometry. The possibility to make statements about composition of the liver, liver anatomy, lesion characteristics and the function of entire liver or various liver segments in the sense of a “one-stop-shop” with a single MRI examination gains in importance in terms of health economics.
-
Die Leberfibrose ist die gemeinsame Endstrecke vieler chronischer Lebererkrankungen und führt unbehandelt zur Leberzirrhose. Da die Leberfibrose prinzipiell reversibel ist, sind nicht invasive Früherkennungsmethoden von großer klinischer Relevanz.
-
In der klinischen Routine gilt die invasive Leberbiopsie als Referenzstandard zur Klärung der Ätiologie einer unklaren Lebererkrankung, zur Quantifizierung der hepatischen Inflammation, der Steatosis hepatis oder des Lebereisengehalts sowie zur Graduierung des Leberfibrosestadiums. Dieses invasive Verfahren hat jedoch einige Nachteile und etliche Einschränkungen.
-
Zur Bestimmung des Fett- und Eisengehalts etablieren sich im klinischen Alltag nicht invasive bildgebende Diagnosemethoden – insbesondere die multiparametrische quantitative MRT.
-
Die Gd-EOB-DTPA-gestützte MRT bietet die Möglichkeit der globalen sowie segmentalen Leberfunktionsdiagnostik.
-
Die Lebereisenkonzentration kann quantitativ in der MRT mittels der Signal-Intensity-Ratio-Methode sowie der Relaxometriemethode unter Bestimmung von R2- und R2*-Werten bestimmt werden.
-
Mittels Protonendichte-Fettfraktion (PDFF) sowie Magnetresonanzspektroskopie (MRS) kann der Fettgehalt der Leber nicht invasiv quantitativ bestimmt werden.
-
Die Möglichkeit, mit einer einzigen MRT-Untersuchung Aussagen sowohl über die Leberanatomie, Läsionseigenschaften sowie die Funktion der gesamten Leber oder der verschiedenen einzelnen Lebersegmente im Sinne eines „one-stop-shop“ zu treffen, gewinnt auf sozialmedizinischer und gesundheitsökonomischer Ebene immer mehr an Bedeutung.
-
Allerdings ist zu berücksichtigen, dass manche MR-basierende Methoden noch keinen flächendeckenden Einzug in die klinische Routine erlangt haben, da Validierungen durch Studien noch ausstehen. Zusätzlich sind die Anschaffungskosten für die nötigen Zusatzapplikationen hoch und die genutzten Algorithmen für die Nachbearbeitung noch in der Entwicklungsphase.
Publikationsverlauf
Artikel online veröffentlicht:
27. November 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Barnes B, Kraywinkel K, Nowossadeck E. et al. Bericht zum Krebsgeschehen in Deutschland 2016. Berlin: Robert Koch-Institut; 2016
- 2 Geisel D, Lüdemann L, Hamm B. et al. Imaging-based liver function tests–past, present and future. RöFo 2015; 187: 863-871
- 3 Ünal E, Akata D, Karcaaltincaba M. Liver function assessment by magnetic resonance imaging. Sem Ultrasound CT MR 2016; 37: 549-560
- 4 Unal E, Idilman IS, Karçaaltıncaba M. Multiparametric or practical quantitative liver MRI: towards millisecond, fat fraction, kilopascal and function era. Expert Rev Gastroenterol Hepatol 2017; 11: 167-182
- 5 Tajima T, Takao H, Akai H. et al. Relationship between liver function and liver signal intensity in hepatobiliary phase of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. J Comput Assist Tomogr 2010; 34: 362-366
- 6 Haimerl M, Verloh N, Zeman F. et al. Gd-EOB-DTPA-enhanced MRI for evaluation of liver function: Comparison between signal-intensity-based indices and T1 relaxometry. Sci Rep 2017; 7: 1-12
- 7 Motosugi U, Ichikawa T, Oguri M. et al. Staging liver fibrosis by using liver-enhancement ratio of gadoxetic acid-enhanced MR imaging: comparison with aspartate aminotransferase-to-platelet ratio index. Magn Reson Imaging 2011; 29: 1047-1052
- 8 Nilsson H, Nordell A, Vargas R. et al. Assessment of hepatic extraction fraction and input relative blood flow using dynamic hepatocyte-specific contrast-enhanced MRI. J Magn Reson Imaging 2009; 29: 1323-1331
- 9 Forsgren MF, Leinhard OD, Dahlström N. et al. Physiologically realistic and validated mathematical liver model revels hepatobiliary transfer rates for Gd-EOB-DTPA using human DCE-MRI data. PloS One 2014; 9: e95700
- 10 Okada M, Murakami T, Yada N. et al. Comparison between T1 relaxation time of Gd-EOB-DTPA-enhanced MRI and liver stiffness measurement of ultrasound elastography in the evaluation of cirrhotic liver. J Magn Reson Imaging 2015; 41: 329-338
- 11 Haimerl M, Verloh N, Zeman F. et al. Assessment of clinical signs of liver cirrhosis using T1 mapping on Gd-EOB-DTPA-enhanced 3T MRI. PloS One 2013; 8: e85658
- 12 Hoad CL, Palaniyappan N, Kaye P. et al. A study of T1 relaxation time as a measure of liver fibrosis and the influence of confounding histological factors. NMR Biomed 2015; 28: 706-714
- 13 De Bazelaire CM, Duhamel GD, Rofsky NM. et al. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004; 230: 652-659
- 14 Katsube T, Okada M, Kumano S. et al. Estimation of liver function using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Invest Radiol 2011; 46: 277-283
- 15 Nassif A, Jia J, Keiser M. et al. Visualization of hepatic uptake transporter function in healthy subjects by using gadoxetic acid–enhanced MR imaging. Radiology 2012; 264: 741-750
- 16 Mensink G, Schienkiewitz A, Haftenberger M. et al. [Overweight and obesity in Germany: results of the German Health Interview and Examination Survey for Adults (DEGS1)]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013; 56: 786-794
- 17 Adams L, Angulo P. Treatment of non-alcoholic fatty liver disease. Postgrad Med J 2006; 82: 315-322
- 18 Younossi ZM, Koenig AB, Abdelatif D. et al. Global epidemiology of nonalcoholic fatty liver disease–meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64: 73-84
- 19 Kühn J-P, Meffert P, Heske C. et al. Prevalence of fatty liver disease and hepatic iron overload in a northeastern German population by using quantitative MR imaging. Radiology 2017; 284: 706-716
- 20 Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 2006; 43: S99-S112
- 21 Ratziu V, Charlotte F, Heurtier A. et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 2005; 128: 1898-1906
- 22 Kuntz E, Kuntz H-D. Hepatology, Principles and Practice: History, Morphology, Biochemistry, Diagnostics, Clinic, Therapy. Heidelberg, Berlin: Springer Science & Business Media; 2006
- 23 Hamer OW, Aguirre DA, Casola G. et al. Fatty liver: imaging patterns and pitfalls. Radiographics 2006; 26: 1637-1653
- 24 Noureddin M, Lam J, Peterson MR. et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology 2013; 58: 1930-1940
- 25 Dixon W. Separate magnetic resonance images of water and fat using phase modulation. Radiology 1984; 153: 189
- 26 Hines CD, Yu H, Shimakawa A. et al. T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat-water-SPIO phantom. J Magn Reson Imaging 2009; 30: 1215-1222
- 27 Curtis WA, Fraum TJ, An H. et al. Quantitative MRI of diffuse liver disease: current applications and future directions. Radiology 2019; 290: 23-30
- 28 Permutt Z, Le TA, Peterson MR. et al. Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease–MRI accurately quantifies hepatic steatosis in NAFLD. Aliment Pharmacol Ther 2012; 36: 22-29
- 29 Bannas P, Kramer H, Hernando D. et al. Quantitative magnetic resonance imaging of hepatic steatosis: Validation in ex vivo human livers. Hepatology 2015; 62: 1444-1455
- 30 Wunderlich AP, Cario H, Juchems MS. et al. Noninvasive MRI-based liver iron quantification: methodic approaches, practical applicability and significance. RöFo 2016; 188: 1031-1036
- 31 Ghugre NR, Coates TD, Nelson MD. et al. Mechanisms of tissue–iron relaxivity: nuclear magnetic resonance studies of human liver biopsy specimens. Magn Reson Med 2005; 54: 1185-1193
- 32 Li T, Aisen A, Hindmarsh T. Assessment of hepatic iron content using magnetic resonance imaging. Acta Radiol 2004; 45: 119-129
- 33 Henninger B, Alustiza J, Garbowski M. et al. Practical guide to quantification of hepatic iron with MRI. Eur Radiol 2020; 30: 383-393
- 34 St Pierre TG, Clark PR, Chua-anusorn W. et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 2005; 105: 855-861
- 35 Gandon Y, Olivie D, Guyader D. et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004; 363: 357-362
- 36 Messroghli DR, Rudolph A, Abdel-Aty H. et al. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging. BMC Med Imaging 2010; 10: 16
- 37 Gandon Y. MRQuantif. Im Internet (Stand: 27.10.2020): https://imagemed.univ-rennes1.fr/en/mrquantif/about
- 38 Lörke J, Erhardt A, Vogt C. et al. Nicht invasive Diagnostik der Leberzirrhose. Dtsch Arztebl 2007; 104: 1752-1757
- 39 Petitclerc L, Sebastiani G, Gilbert G. et al. Liver fibrosis: Review of current imaging and MRI quantification techniques. J Magn Reson Imaging 2017; 45: 1276-1295
- 40 Guo J, Posnansky O, Hirsch S. et al. Fractal network dimension and viscoelastic powerlaw behavior: II. An experimental study of structure-mimicking phantoms by magnetic resonance elastography. Phys Med Biol 2012; 57: 4041
- 41 Azizi G, Keller J, Lewis M. et al. Performance of elastography for the evaluation of thyroid nodules: a prospective study. Thyroid 2013; 23: 734-740
- 42 Wurnig M, Boss A. MR-Elastographie der Leber. Swiss Medical Forum: EMH Media; 2013: 784-785
- 43 Sack I, Fischer T, Thomas A. et al. Magnetresonanzelastographie der Leber. Radiologe 2012; 52: 738-744
- 44 Akkaya HE, Erden A, Öz DK. et al. Magnetic resonance elastography: basic principles, technique, and clinical applications in the liver. Diagn Intervent Radiol 2018; 24: 328
- 45 Yin M, Chen J, Glaser KJ. et al. Abdominal magnetic resonance elastography. Top Magn Reson Imaging 2009; 20: 79-87