Horm Metab Res 2020; 52(06): 421-426
DOI: 10.1055/a-1139-2079
Review

Immunohistochemistry of the Human Adrenal CYP11B2 in Normal Individuals and in Patients with Primary Aldosteronism

1   G. V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
2   Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
3   Medicine (Endocrinology), University of Mississippi Medical Center, Jackson, MS, USA
,
2   Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
,
Koshiro Nishimoto
4   Department of Uro-Oncology, Saitama Medical University International Medical Center, Saitama, Japan
5   Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
› Author Affiliations
Funding: National Heart and Lung Institute, Grant No. R01 HL144847. National Institute of General Medical Sciences, Grant No. 1U54GM115428.

Abstract

The CYP11B2 enzyme is the terminal enzyme in the biosynthesis of aldosterone. Immunohistochemistry using antibodies against CYP11B2 defines cells of the adrenal ZG that synthesize aldosterone. CYP11B2 expression is normally stimulated by angiotensin II, but becomes autonomous in primary hyperaldosteronism, in most cases driven by recently discovered somatic mutations of ion channels or pumps. Cells expressing CYP11B2 in young normal humans form a continuous band beneath the adrenal capsule; in older individuals they form discrete clusters, aldosterone-producing cell clusters (APCC), surrounded by non-aldosterone producing cells in the outer layer of the adrenal gland. Aldosterone-producing adenomas may exhibit a uniform or heterogeneous expression of CYP11B2. APCC frequently persist in the adrenal with an aldosterone-producing adenoma suggesting autonomous CYP11B2 expression in these cells as well. This was confirmed by finding known mutations that drive aldosterone production in adenomas in the APCC of clinically normal people. Unilateral aldosteronism may also be due to multiple CYP11B2-expressing nodules of various sizes or a continuous band of hyperplastic ZG cells expressing CYP11B2. Use of CYP11B2 antibodies to identify areas for sequencing has greatly facilitated the detection of aldosterone-driving mutations.



Publication History

Received: 21 December 2019

Accepted: 09 March 2020

Article published online:
14 April 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32: 81-151
  • 2 Stocco DM, Clark BJ. Role of the steroidogenic acute regulatory protein (StAR) in steroidogenesis. Biochem Pharm 1996; 51: 197-205
  • 3 Gomez-Sanchez E, Gomez-Sanchez CE. The multifaceted mineralocorticoid receptor. Compr Physiol 2014; 4: 965-994
  • 4 Gomez-Sanchez EP. Brain mineralocorticoid receptors in cognition and cardiovascular homeostasis. Steroids 2014; 91: 20-31
  • 5 Hattangady NG, Olala LO, Bollag WB. et al. Acute and chronic regulation of aldosterone production. Mol Cell Endocr 2012; 350: 151-162
  • 6 Seccia TM, Caroccia B, Gomez-Sanchez EP. et al. The biology of normal zona glomerulosa and aldosterone-producing adenoma: Pathological implications. Endocr Rev 2018; 39: 1029-1056
  • 7 Monticone S, D'Ascenzo F, Moretti C. et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: A systematic review and meta-analysis. Lancet Diabetes Endocr 2018; 6: 41-50
  • 8 Funder JW, Carey RM, Mantero F. et al. The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2016; 101: 1889-1916
  • 9 Choi M, Scholl UI, Yue P. et al. K+channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 2011; 331: 768-772
  • 10 Beuschlein F, Boulkroun S, Osswald A. et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 2013; 45: 440-444
  • 11 Scholl UI, Goh G, Stolting G. et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2013; 45: 1050-1054
  • 12 Fernandes-Rosa FL, Daniil G, Orozco IJ. et al. A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nat. Genet 2018; 50: 355-361
  • 13 Reimer EN, Walenda G, Seidel E. et al. CACNA1H(M1549V) mutant calcium channel causes autonomous aldosterone production in HAC15 cells and is inhibited by mibefradil. Endocrinology 2016; 157: 3016-3022
  • 14 Scholl UI, Stolting G, Nelson-Williams C. et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 2015; 4: e06315
  • 15 Akerstrom T, Maharjan R, Sven Willenberg H. et al. Activating mutations in CTNNB1 in aldosterone producing adenomas. Sci Rep 2016; 6: 19546
  • 16 Azizan EA, Poulsen H, Tuluc P. et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet 2013; 45: 1055-1060
  • 17 Oki K, Plonczynski MW, Luis Lam M. et al. Potassium channel mutant KCNJ5 T158A expression in HAC-15 cells increases aldosterone synthesis. Endocrinology 2012; 153: 1774-1782
  • 18 Simpson SA, Tait JF. Recent progress in methods of isolation, chemistry, and physiology of aldosterone. Recent Prog Horm Res 1955; 11: 183-219
  • 19 Conn JW. Primary aldosteronism, a new clinical syndrome. J Lab Clin Med 1955; 45: 3-7
  • 20 Giroud CJP, Stachenko J, Venning EH. Secretion of aldosterone by the zona glomerulosa of rat adrenal glands incubated in vitro. Proc Soc Exp Biol Med 1956; 92: 154-158
  • 21 Lauber M, Sugano S, Ohnishi T. et al. Aldosterone biosynthesis and cytochrome P-45011b : Evidence for two diffeent forms of the enzyme in rats. J Steroid Biochem 1987; 26: 693-698
  • 22 Ohnishi T, Wada A, Lauber M. et al. Aldosterone biosynthesis in mitochondria of isolated zones of adrenal cortex. J Steroid Biochem 1988; 31: 73-81
  • 23 Chavarri MR, Yamakita N, Chiou S. et al. Calf adrenocortical fasciculata cells secrete aldosterone when placed in primary culture. J Steroid Biochem Mol Biol 1993; 45: 493-500
  • 24 Nonaka Y, Okamoto M, Morohashi K-I. et al. Functional expression of cDNAs for bovine 11b-hydroxylase-aldosterone synthases, P450(11b)-2 and -3, and their chimeras. J Steroid Biochem Mol Biol 1992; 41: 779-780
  • 25 Okamoto M, Nonaka Y, Takemori H. et al. Molecular identity and gene expression of aldosterone synthase cytochrome P450. Biochem Biophys Res Commun 2005; 338: 325-330
  • 26 Ogishima T, Suzuki H, Hata J. et al. Zone-specific expression of aldosterone synthase cytochrome P-45011b in rat adrenal cortex: Histochemical basis for the functional zonation. Endocrinology 1992; 130: 2971-2977
  • 27 Wotus C, Levay-Young BK, Rogers L. et al. Development of adrenal zonation in fetal rats defined by expression of aldosteone synthase and 11b-hydroxylase. Endocrinology 1998; 139: 4397-4403
  • 28 Mitani F, Suzuki H, Hata J. et al. A novel cell layer without corticosterone-synthesizing enzymes in rat adrenal cortex: Histochemical detection and possible physiological role. Endocrinology 1994; 135: 431-438
  • 29 Mornet E, Dupont J, Vitek A. et al. Characterization of two genes encoding human steroid 11b-hydroxylase (P-45011b). J Biol Chem 1989; 264: 20961-20967
  • 30 Kawamoto T, Mitsuuchi Y, Toda K. et al. Role of steroid 11 beta-hydroxylase and steroid 18-hydroxylase in the biosynthesis of glucocorticoids and mineralocorticoids in humans. Proc Natl Acad Sci USA 1992; 89: 1458-1462
  • 31 Ogishima T, Shibata H, Shimada H. et al. Aldosterone synthase cytochrome P-450 expressed in the adrenals of patients with primary aldosteronism. J Biol Chem 1991; 266: 10731-10734
  • 32 Nishimoto K, Nakagawa K, Li D. et al. Adrenocortical zonation in humans under normal and pathological conditions. J Clin Endocrinol Metab 2010; 95: 2296-2305
  • 33 Gomez-Sanchez CE, Qi X, Velarde-Miranda C. et al. Development of monoclonal antibodies against human CYP11B1 and CYP11B2. Mol Cell Endocrinol 2014; 383: 111-117
  • 34 Nishimoto K, Koga M, Seki T. et al. Immunohistochemistry of aldosterone synthase leads the way to the pathogenesis of primary aldosteronism. Mol Cell Endocrinol 2017; 441: 124-133
  • 35 Hayashi T, Zhang Z, Al-Eyd G. et al. Expression of aldosterone synthase CYP11B2 was inversely correlated with longevity. J Steroid Biochem Mol Biol 2019; 191: 105361
  • 36 Nishimoto K, Seki T, Hayashi Y. et al. Human adrenocortical remodeling leading to aldosterone-producing cell cluster generation. Int J Endocrinol. 2016 7834356.
  • 37 Nishimoto K, Tomlins SA, Kuick R. et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc Natl Acad Sci USA 2015; 112: E4591-E4599
  • 38 Nanba K, Vaidya A, Rainey WE. Aging and adrenal aldosterone production. Hypertension 2018; 71: 218-223
  • 39 Boulkroun S, Samson-Couterie B, Dzib JF. et al. Adrenal cortex remodeling and functional zona glomerulosa hyperplasia in primary aldosteronism. Hypertension 2010; 56: 885-892
  • 40 Omata K, Anand SK, Hovelson DH. et al. Aldosterone-producing cell clusters frequently harbor somatic mutations and accumulate with age in normal adrenals. J Endocr Soc 2017; 1: 787-799
  • 41 Omata K, Tomlins SA, Rainey WE. Aldosterone-producing cell clusters in normal and pathological states. Horm Metab Res 2017; 49: 951-956
  • 42 Nanba K, Vaidya A, Williams GH. et al. Age-related autonomous aldosteronism. Circulation 2017; 136: 347-355
  • 43 Scholl UI, Stolting G, Schewe J. et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet 2018; 50: 349-354
  • 44 Williams TA, Monticone S, Mulatero P. KCNJ5 mutations are the most frequent genetic alteration in primary aldosteronism. Hypertension 2015; 65: 507-509
  • 45 Nanba K, Omata K, Else T. et al. Targeted molecular characterization of aldosterone-producing adenomas in White Americans. J Clin Endocrinol Metab 2018; 103: 3869-3876
  • 46 Nanba K, Omata K, Gomez-Sanchez CE. et al. Genetic characteristics of aldosterone-producing adenomas in blacks. Hypertension 2019; 73: 885-892
  • 47 Pinggera A, Negro G, Tuluc P. et al. Gating defects of disease-causing de novo mutations in Cav1.3 Ca(2+) channels. Channels (Austin) 2018; 12: 388-402
  • 48 Tan GC, Negro G, Pinggera A. et al. Aldosterone-producing adenomas: Histopathology-genotype correlation and identification of a novel CACNA1D mutation. Hypertension 2017; 70: 129-136
  • 49 Ono Y, Yamazaki Y, Omata K. et al. Histological characterization of aldosterone-producing adrenocortical adenomas with different somatic mutations. J Clin Endocrinol Metab 2020; 105 pii. dgz235.
  • 50 Nakamura Y, Kitada M, Satoh F. et al. Intratumoral heterogeneity of steroidogenesis in aldosterone-producing adenoma revealed by intensive double- and triple-immunostaining for CYP11B2/B1 and CYP17. Mol Cell Endocrinol 2016; 422: 57-63
  • 51 Nakamura Y, Maekawa T, Felizola SJ. et al. Adrenal CYP11B1/2 expression in primary aldosteronism: Immunohistochemical analysis using novel monoclonal antibodies. Mol Cell Endocrinol 2014; 392: 73-79
  • 52 Tezuka Y, Yamazaki Y, Kitada M. et al. 18-Oxocortisol synthesis in aldosterone-producing adrenocortical adenoma and significance of KCNJ5 mutation status. Hypertension 2019; 73: 1283-1290
  • 53 De Sousa K, Boulkroun S, Baron S. et al. Genetic, cellular, and molecular heterogeneity in adrenals with aldosterone-producing adenoma. Hypertension 2020; 75: 1034-1044
  • 54 Yang Y, Gomez-Sanchez CE, Jaquin D. et al. Primary aldosteronism: KCNJ5 mutations and adrenocortical cell growth. Hypertension 2019; 74: 809-816
  • 55 Fernandes-Rosa FL, Giscos-Douriez I, Amar L. et al. Different somatic mutations in multinodular adrenals with aldosterone-producing adenoma. Hypertension 2015; 66: 1014-1022
  • 56 Gomez-Sanchez CE, Gomez-Sanchez CM, Oki K. Aldosterone-producing Adenomas: More than meets the eye. Hypertension. 2020 in press
  • 57 Carr CE, Cope C, Cohen DL. et al. Comparison of sequential versus simultaneous methods of adrenal venous sampling. J Vasc Interv Radiol 2004; 15: 1245-1250
  • 58 Boulkroun S, Fernandes-Rosa FL, Zennaro MC. Old and new genes in primary aldosteronism. Best Pract Res Clin Endocrinol Metab. 2020 DOI: 10.1016/j.beem.2020.101375 101375.
  • 59 Shariq OA, Bancos I, Cronin PA. et al. Contralateral suppression of aldosterone at adrenal venous sampling predicts hyperkalemia following adrenalectomy for primary aldosteronism. Surgery 2018; 163: 183-190
  • 60 Wolley MJ, Gordon RD, Ahmed AH. et al. Does contralateral suppression at adrenal venous sampling predict outcome following unilateral adrenalectomy for primary aldosteronism? A retrospective study. J Clin Endocrinol Metab 2015; 100: 1477-1484
  • 61 Yamazaki Y, Nakamura Y, Omata K. et al. Histopathological classification of cross-sectional image-negative hyperaldosteronism. J Clin Endocrinol Metab 2017; 102: 1182-1192
  • 62 Wannachalee T, Zhao L, Nanba K. et al. Three discrete patterns of primary aldosteronism lateralization in response to cosyntropin during adrenal vein sampling. J Clin Endocrinol Metab 2019; 104: 5867-5876
  • 63 Williams TA, Burrello J, Sechi LA. et al. Computed tomography and adrenal venous sampling in the diagnosis of unilateral primary aldosteronism. Hypertension 2018; 72: 641-649
  • 64 Yamazaki Y, Omata K, Tezuka Y. et al. Non-neoplastic/hyperplastic primary aldosteronism - Its histopathology and genotype. Curr Opin Endocr Metab Res 2019; 8: 122-131
  • 65 Tamura A, Nishimoto K, Seki T. et al. Somatic KCNJ5 mutation occurring early in adrenal development may cause a novel form of juvenile primary aldosteronism. Mol Cell Endocrinol 2017; 441: 134-139