ABSTRACT
Determination of the levels of thyroid-stimulating hormone (TSH) and free
thyroid hormones (fTHs) is crucial for assessing thyroid function. However,
as a result of inter-individual genetic variability and different
environmental factors individual set points exist for TSH and fTHs and
display considerable variation. Furthermore, under specific
pathophysiological conditions like central hypothyroidism, TSH secreting
pituitary tumors, or thyroid hormone resistance the established markers TSH
and fTH fail to reliably predict thyroid function and adequate supply of TH
to peripheral organs. Even in case of overt hyper- and hypothyroidism
circulating fTH concentrations do not correlate with clinical symptoms.
Therefore, there is a clear need for novel, more specific biomarkers to
diagnose and monitor thyroid function. OMICs screening approaches allow
parallel profiling of hundreds to thousands of molecules and thus
comprehensive monitoring of molecular alterations in tissues and body fluids
that might be associated with changes in thyroid function. These techniques
thus constitute promising tools for the identification of urgently needed
novel biomarkers. This mini review summarizes the findings of OMICs studies
in thyroid research with a particular focus on population-based and patient
studies as well as interventional approaches investigating the effects of
thyroid hormone administration.
Key words
OMICs - proteome - metabolome - transcriptome - thyroid function - thyrotropin - free thyroxine