Subscribe to RSS
DOI: 10.1055/a-1149-2204
Ansätze zur Etablierung von Präzisionsmedizin bei der Parkinson-Krankheit mit dem Schwerpunkt Genetik
Emerging concepts for precision medicine in Parkinson’s disease with focus on geneticsZusammenfassung
Während Parkinson mit seiner vielfältigen und sehr individuellen Kombination aus motorischen und nichtmotorischen Symptomen zunehmend genauer charakterisiert ist, nicht zuletzt durch die Untersuchung von großen Patientenkohorten mit Deep-Phenotyping-Approach, folgt die Therapie weiterhin einem einheitlichen Schema. Durch bessere Stratifikation bieten Präzisionsmedizin-Ansätze die Möglichkeit, die Behandlung und patientenzentrierte Versorgung zu verbessern. Spezifische Therapien für den Einsatz bei monogenetischen Parkinson-Formen, die aktuell untersucht werden, könnten helfen, Krankheitsmechanismen zu verstehen und dadurch auch zum Verständnis des idiopathischen Parkinson-Syndroms beitragen, sowie neue Behandlungsziele aufzeigen. Wir zeigen Daten zur Vorhersage von Wirksamkeit und Langzeit-Vorteil von aktuellen medikamentösen Behandlungen sowie von Tiefer Hirnstimulation (THS) im Kontext von wachsendem pharmakogenetischen Wissen. Konfrontiert mit asymptomatischen Trägern genetischer Mutationen (monogenetische Erkrankung) von variabler Penetranz und prodromalen Stadien wie REM-Schlaf-Verhaltensstörungen, zeichnen sich erste präventive Therapiestrategien ab. Ihr Einfluss auf die Krankheitsprogression und Aussichten für die klinische Praxis müssen adressiert werden.
Abstract
The diverse and highly individual presentations of Parkinson’s disease (PD) as a complex combination of motor and non-motor symptoms are being increasingly well characterised not least through large patient cohorts applying deep phenotyping. However, in terms of treatment of PD, the approach is uniform and purely symptomatic. Better stratification strategies with better precision medicine approaches offer opportunities to improve symptomatic treatment, define first causative therapies and provide more patient-centred care. Insight from targeted therapies for monogenic forms of PD aiming at neuroprotection may pave the way for new mechanism-based interventions also for the more common idiopathic PD. Improved stratification of patients may support symptomatic treatments by predicting treatment efficacy and long-term benefit of current pharmacological or neuromodulatory therapies, e.g. in the context of emerging pharmacogenomic knowledge. Based on asymptomatic carriers with monogenic PD or patients with REM sleep behaviour disorder (RBD), first options for applying preventive treatments emerge. The implications of these treatment strategies in relation to disease progression, and the prospects of their implementation in clinical practice need to be addressed.
Schlüsselwörter
Präzisionsmedizin - Personalisierte Medizin - Stratifizierung - Parkinson-Krankheit - GenetikKey words
Precision Medicine - Personalised Medicine - Stratification - Parkinson’s disease - GeneticsPublication History
Received: 30 January 2020
Accepted: 28 March 2020
Article published online:
02 June 2020
© Georg Thieme Verlag KG
Stuttgart · New York
-
Literatur
- 1 Love-Koh J, Peel A, Rejon-Parrilla JC. et al. The future of precision medicine: potential impacts for health technology assessment. Pharmacoeconomics. 2018; 36: 1439-1451 . Im Internet: https://doi.org/10.1007/s40273-018-0686-6
- 2 Le Tourneau C, Kamal M, Bièche I. Precision medicine in oncology: what is it exactly and where are we?. Per Med 2018; 15: 351-353 . Im Internet: https://doi.org/10.2217/pme-2018-0036; Stand: 29/01/2020
- 3 Renfro LA, Sargent DJ. Statistical controversies in clinical research: basket trials, umbrella trials, and other master protocols : A review and examples. Special Article 2017; 34-43
- 4 Wimo A, Jönsson L, Gustavsson A. Cost of illness and burden of dementia – The base option. Im Internet:. https://www.alzheimer-europe.org/Research/European-Collaboration-on-Dementia/Cost-of-dementia/Cost-of-illness-and-burden-of-dementia ; Stand: 29/01/2020
- 5 Why choose neurodegenerative diseases? Im Internet: https://www.neurodegenerationresearch.eu/about/why/ Stand: 29/01/2020.
- 6 Nerius M, Fink A, Doblhammer G. Parkinson’s disease in Germany: Prevalence and incidence based on health claims data. Acta Neurol Scand 2017; 136: 386-392
- 7 Ray Dorsey E, Elbaz A, Nichols E. et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol 2018; 17: 939-953
- 8 Nutt JG. Motor subtype in Parkinson’s disease: different disorders or different stages of disease?. Mov Disord 2016; 31: 957-961
- 9 Selikhova M, Williams DR, Kempster PA. et al. A clinico-pathological study of subtypes in Parkinson’s disease. Brain 2009; 132: 2947-2957
- 10 Pagano G, Ferrara N, Brooks DJ. et al. Age at onset and Parkinson disease phenotype. Neurology 2016; 86: 1400-1407
- 11 Paisán-Ruiz C. Young-onset Parkinson disease. Im Internet:. https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=2828 Stand: 29/01/2020
- 12 Schrag A, Schott JM. Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol 2006; 5: 355-363
- 13 Hoehn MM, Yahr MD. Parkinsonism: onset, progression, and mortality. Neurology. 1967: 17 427-442
- 14 Goetz CG, Poewe W, Rascol O. et al. Movement disorder society task force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord 2004; 19: 1020-1028
- 15 Movement disorder society task force on rating scales for Parkinson’s disease. The Unified Parkinson’s Disease Rating Scale (UPDRS): status and Recommendations Movement. 2003 18. 738-750
- 16 Martinez-Martin P, Rodriguez-Blazquez C, Alvarez-Sanchez M. et al. Expanded and independent validation of the movement disorder society-unified Parkinson’s disease rating scale (MDS-UPDRS). J Neurol 2013; 260: 228-236
- 17 Chaudhuri KR, Sauerbier A, Rojo JM. et al. The burden of non-motor symptoms in Parkinson’s disease using a self-completed non-motor questionnaire: A simple grading system. Park Relat Disord 2015; 21: 287-291
- 18 Carrozzino D. Clinimetric approach to rating scales for the assessment of apathy in Parkinson’s disease: a systematic review. Prog Neuro-Psychopharmacology Biol Psychiatry 2019; 94: 109641
- 19 Sauerbier A, Jenner P, Todorova A. et al. Non motor subtypes and Parkinson’s disease. Park Relat Disord 2016; 22: S41-S46
- 20 Di Battista ME, Cova I, Rubino A. et al. Intercepting Parkinson disease non-motor subtypes: a proof-of-principle study in a clinical setting. J Neurol Sci 2018; 388: 186-191
- 21 Mu J, Chaudhuri KR, Bielza C. et al. Parkinson’s disease subtypes identified from cluster analysis of motor and non-motor symptoms. Front Aging Neurosci 2017; 9: 1-10
- 22 He R, Yan X, Guo J. et al. Recent advances in biomarkers for Parkinson’s disease. Front Aging Neurosci 2018; 10: 1-19
- 23 Liu G, Locascio JJ, Corvol J-C. et al. Prediction of cognition in Parkinson’s disease with a clinical–genetic score: A longitudinal analysis of nine cohorts. Lancet Neurol 2017; 16: 620-629
- 24 Sardi SP, Simuni T. New era in disease modification in Parkinson’s disease: review of genetically targeted therapeutics. Park Relat Disord 2019; 59: 32-38
- 25 Noyce AJ, Bandres-ciga S, Kim J. et al. The Parkinson’s Disease Mendelian Randomization Research Portal. Mov Disord 2019; 34: 1864–1872 Im Internet: http://dx.doi.org/10.1101/604033.
- 26 Heinzel S, Lerche S, Maetzler W. et al. Global, yet incomplete overview of Cohort studies in Parkinson’s disease. J Parkinsons Dis 2017; 7: 423-432
- 27 Pringsheim T, Jette N, Frolkis A. et al. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 2014; 29: 1583-1590
- 28 Burbulla LF, Krüger R. Converging environmental and genetic pathways in the pathogenesis of Parkinson’s disease. J Neurol Sci 2011; 306: 1-8
- 29 Reed X, Bandrés-Ciga S, Blauwendraat C. et al. The role of monogenic genes in idiopathic Parkinson’s disease. Neurobiol Dis 2019; 124: 230-239
- 30 Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol 2019; 4422: 1-9
- 31 Tan MMX, Malek N, Lawton MA. et al. Genetic analysis of Mendelian mutations in a large UK population-based Parkinson’s disease study. Brain 2019; 142: 2828-2844
- 32 Hentati F, Thompson C, Nosova E. et al. LRRK2 parkinsonism in Tunisia and Norway: a comparative analysis of disease penetrance. Neurology. 2014; 83 (06) 568-569
- 33 Blauwendraat C, Faghri F, Pihlstrom L. et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging 2017; 57: 247.e9-247.e13
- 34 Visscher PM, Wray NR, Zhang Q. et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 2017; 101: 5-22
- 35 Krüger R. Genes in familial parkinsonism and their role in sporadic Parkinson’s disease. J Neurol Suppl 2004; 251: 2-6
- 36 Finkbeiner S. Skibinski. In: Drug discovery in Parkinson’s disease: update and developments in the use of cellular models. Int J High Throughput Screen 2011 ; 2011; 15
- 37 Lesage S, Brice A. Role of mendelian genes in „sporadic“ Parkinson’s disease. Park Relat Disord 2012; 18: S66-S70
- 38 Heckman MG, Soto-Ortolaza AI, Aasly JO. et al. Population-specific frequencies for LRRK2 susceptibility variants in the genetic epidemiology of Parkinson’s disease (GEO-PD) consortium. Mov Disord 2013; 28: 1740-1744
- 39 Domingo A, Klein C. Genetics of Parkinson disease. Vol. 1. Aufl. Elsevier B.V. Amsterdam, Netherlands; 2018
- 40 Ross OA, Soto-Ortolaza AI, Heckman MG. et al. Association of LRRK2 exonic variants with susceptibility to Parkinson’s disease: a case–control study. Lancet Neurol 2011; 10: 898-908
- 41 Giladi N, Mirelman A, Thaler A. et al. A personalized approach to Parkinson’s disease patients based on founder mutation analysis. Front Neurol 2016; 7: 1-5
- 42 Healy DG, Falchi M, O’Sullivan SS. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 2008; 7: 583-590
- 43 Hentati F, Trinh J, Thompson C. et al. LRRK2 parkinsonism in Tunisia and Norway: a comparative analysis of disease penetrance. Neurology 2014; 83: 568 LP-569
- 44 Krüger R. LRRK2 in Parkinson’s disease – Drawing the curtain of penetrance: A commentary. BMC Med 2008; 6: 4-7
- 45 Herbst S, Gutierrez MG. LRRK2 in infection: friend or foe? ACS Infect Dis 2019; 5: 809-815
- 46 Derkinderen P, Neunlist M. Crohn’s and Parkinson disease: Is LRRK2 lurking around the corner? Nat Rev Gastroenterol Hepatol 2018; 15: 330-331
- 47 Gloeckner CJ, Kinkl N, Schumacher A. et al. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 2006; 15: 223-232
- 48 Sardi SP, Cedarbaum JM, Brundin P. Targeted therapies for Parkinson’s disease: from genetics to the clinic. Mov Disord 2018; 33: 684-696
- 49 Reinhardt P, Schmid B, Burbulla LF. et al. Genetic correction of a lrrk2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 2013; 12: 354-367
- 50 Study to evaluate DNL201 in subjects with Parkinson’s Disease. Im Internet: https://clinicaltrials.gov/ct2/show/NCT04056689?term=Denali&cond=Parkinson&draw=2 Stand: 29/01/2020.
- 51 Brüggemann N, Klein C. Will genotype drive treatment options? Mov Disord 2019; 34: 1864-1872
- 52 Kishore A, Ashok Kumar Sreelatha A, Sturm M. et al. Understanding the role of genetic variability in LRRK2 in Indian population. Mov Disord 2019; 34: 496-505
- 53 Nalysnyk L, Rotella P, Simeone JC. et al. Gaucher disease epidemiology and natural history: a comprehensive review of the literature. Hematology 2017; 22: 65-73
- 54 Sidransky E, Nalls MA, Aasly JO. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009; 361: 1651-1661
- 55 Do J, McKinney C, Sharma P. et al. Glucocerebrosidase and its relevance to Parkinson disease. Mol Neurodegener 2019; 14: 1-16
- 56 Brockmann K, Srulijes K, Pflederer S. et al. GBA-associated Parkinson’s disease: reduced survival and more rapid progression in a prospective longitudinal study. Mov Disord 2015; 30: 407-411
- 57 Sheerin UM, Houlden H, Wood NW. Advances in the genetics of Parkinson’s disease: a guide for the clinician. Mov Disord Clin Pract 2014; 1: 3-13
- 58 Robak LA, Jansen IE, van Rooij J. et al. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain 2017; 140: 3191-3203
- 59 Judith Peterschmitt M, Gasser T, Isaacson S. et al. Safety, tolerability and pharmacokinetics of oral venglustat in Parkinson disease patients with a GBA mutation. Mol Genet Metab 2019; 126: S117
- 60 A global study to assess the drug dynamics, efficacy, and safety of GZ/SAR402671 in Parkinson’s disease patients carrying a glucocerebrosidase (GBA) gene mutation (MOVES-PD). Im Internet:. https://clinicaltrials.gov/ct2/show/NCT02906020. Stand: 29/01/2020
- 61 Maegawa GHB, Tropak MB, Buttner JD. et al. Identification and characterization of ambroxol as an enzyme enhancement agent for Gaucher disease. J Biol Chem 2009; 284: 23502-23516
- 62 McNeill A, Magalhaes J, Shen C. et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain 2014; 137: 1481-1495
- 63 Mazzulli JR, Zunke F, Tsunemi T. et al. Activation of β-glucocerebrosidase reduces pathological α-synuclein and restores lysosomal function in Parkinson’s patient midbrain neurons. J Neurosci 2016; 36: 7693-7706
- 64 Mullin S, Smith L, Lee K. et al. Ambroxol for the Treatment of Patients with Parkinson Disease with and without Glucocerebrosidase Gene Mutations: a Nonrandomized, Noncontrolled Trial. JAMA Neurol 2020; 77: 427
- 65 Phase 1/2a clinical trial of PR001A in patients with Parkinson’s disease with at least one GBA1 mutation (PROPEL). Im Internet: https://clinicaltrials.gov/ct2/show/study/NCT04127578?term=AAV%2C+Prevail&cond=Parkinson+Disease&draw=2&rank=1 Stand: 29/01/2020.
- 66 Zhou Q, Melton DA. Extreme makeover: converting one cell into another. Cell Stem Cell 2008; 3: 382-388
- 67 Grenier K, Kao J, Diamandis P. Three-dimensional modeling of human neurodegeneration: Brain organoids coming of age. Mol Psychiatry 2019 25. 254-274
- 68 Rocha DN, Carvalho ED, Pêgo AP. High-throughput platforms for the screening of new therapeutic targets for neurodegenerative diseases. Drug Discov Today 2016; 21: 1355-1366
- 69 Stocco G, Pelin M, Franca R. et al. Pharmacogenetics of azathioprine in inflammatory bowel disease: A role for glutathione-S-transferase? World J Gastroenterol 2014; 20: 3534-3541
- 70 Roden DM, McLeod HL, Relling MV. et al. Pharmacogenomics. Lancet 2019; 394: 521-532
- 71 Ellis JM, Fell MJ. Current approaches to the treatment of Parkinson’s disease. Bioorganic Med Chem Lett 2017; 27: 4247-4255
- 72 Corvol JC, Poewe W. Pharmacogenetics of Parkinson’s disease in clinical practice. Mov Disord Clin Pract 2017; 4: 173-180
- 73 Masellis M, Collinson S, Freeman N. et al. Dopamine D2 receptor gene variants and response to rasagiline in early Parkinson’s disease: a pharmacogenetic study. Brain 2016; 139: 2050-2062
- 74 Olanow CW, Hauser RA, Jankovic J. et al. A randomized, double-blind, placebo-controlled, delayed start study to assess rasagiline as a disease modifying therapy in Parkinson’s disease (the ADAGIO study): rationale, design, and baseline characteristics. Mov Disord 2008; 23: 2194-2201
- 75 Politi C, Ciccacci C, Novelli G. et al. Genetics and Treatment Response in Parkinson’s Disease: an Update on Pharmacogenetic Studies. NeuroMolecular Med 2018; 20: 1-17
- 76 Bialecka M, Kurzawski M, Klodowska-Duda G. et al. The association of functional catechol-O-methyltransferase haplotypes with risk of Parkinson’s disease, levodopa treatment response, and complications. Pharmacogenet Genomics 2008; 18: 815–821
- 77 Kuusimäki T, Korpela J, Pekkonen E. et al. Deep brain stimulation for monogenic Parkinson’s disease: a systematic review. J Neurol 2019; 0: 0
- 78 Weiss D, Brockmann K, Srulijes K. et al. Long-term follow-up of subthalamic nucleus stimulation in glucocerebrosidase-associated Parkinson’s disease. J Neurol 2012; 259: 1970-1972
- 79 Ligaard J, Sannæs J, Pihlstrøm L. Deep brain stimulation and genetic variability in Parkinson’s disease: a review of the literature. Npj Park Dis 2019; 5: 1-10
- 80 Meissner WG, Laurencin C, Tranchant C. et al. Outcome of deep brain stimulation in slowly progressive multiple system atrophy: a clinico-pathological series and review of the literature. Park Relat Disord 2016; 24: 69-75
- 81 Dafsari HS, Weiß L, Silverdale M. et al. Short-term quality of life after subthalamic stimulation depends on non-motor symptoms in Parkinson’s disease. Brain Stimul 2018; 11: 867-874
- 82 Petry-Schmelzer JN, Krause M, Dembek TA. et al. Non-motor outcomes depend on location of neurostimulation in Parkinson’s disease. Brain 2019; 142: 3592-3604
- 83 Galbiati A, Verga L, Giora E. et al. The risk of neurodegeneration in REM sleep behavior disorder: a systematic review and meta-analysis of longitudinal studies. Sleep Med Rev 2019; 43: 37-46
- 84 Zhang X, Sun X, Wang J. et al. Prevalence of rapid eye movement sleep behavior disorder (RBD) in Parkinson’s disease: a meta and meta-regression analysis. Neurol Sci 2017; 38: 163-170
- 85 Postuma RB, Iranzo A, Hu M. et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: A multicentre study. Brain 2019; 142: 744-759
- 86 Noyce AJ, R’Bibo L, Peress L. et al. PREDICT-PD: an online approach to prospectively identify risk indicators of Parkinson’s disease. Mov Disord 2017; 32: 219-226
- 87 Berg D, Postuma RB, Adler CH. et al. MDS research criteria for prodromal Parkinson’s disease. Mov Disord 2015; 30: 1600-1611
- 88 Heinzel S, Berg D, Gasser TM. et al. Prodromal PD calculator (Members only). Im Internet:. www.movementdisorders.org/pdcalculator. Stand: 29/01/2020
- 89 Postuma RB, Berg D. Prodromal Parkinson’s disease: the decade past, the decade to come. Mov Disord 2019; 34: 665-675
- 90 Blumenberg C, Barros AJD. Electronic data collection in epidemiological research: The use of REDCap in the pelotas birth cohorts. Appl Clin Inform 2016; 7: 672-681
- 91 Califf RM. Biomarker definitions and their applications. Exp Biol Med 2018; 243: 213-221
- 92 Parnetti L, Gaetani L, Eusebi P. et al. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol 2019; 18: 573-586
- 93 Redenšek S, Dolžan V, Kunej T. From genomics to omics landscapes of Parkinson’s disease: revealing the molecular mechanisms. Omi A J Integr Biol 2018; 22: 1-16