Gesundheitswesen 2020; 82(06): 501-506
DOI: 10.1055/a-1164-6611
Übersichtsarbeit

Quarantäne alleine oder in Kombination mit weiteren Public-Health-Maßnahmen zur Eindämmung der COVID-19 Pandemie: Ein Cochrane Rapid Review

Quarantine Alone or in Combination with Other Public Health Measures to Control COVID-19: A Rapid Review (Review)
Verena Mayr
1   Evidenzbasierte Medizin und Evaluierung, Donau-Universität Krems, Krems, Austria
,
Barbara Nußbaumer-Streit
2   Cochrane Österreich, Donau-Universität Krems Department Evidenzbasierte Medizin und Klinische Epidemiologie, Krems an der Donau, Austria
,
Gerald Gartlehner
3   Department für Evidenzbasierte Medizin und Klinische Epidemiologie, Donau-Universität Krems Department Evidenzbasierte Medizin und Klinische Epidemiologie, Krems, Austria
4   Research Triangle Institute International, RTI-UNC Evidence-based Practice Center, Research Triangle Park, United States
› Institutsangaben

Zusammenfassung

Hintergrund Die Coronavirus-Krankheit COVID-19 ist eine neue, sich rasch ausbreitende zoonotische Infektionskrankheit, die der Weltgesundheitsorganisation (WHO) erstmals am 31. Dezember 2019 gemeldet wurde. Da zurzeit keine wirksamen Medikamente oder Impfstoffe zur Behandlung oder Prävention von COVID-19 zur Verfügung stehen, rücken nicht-pharmakologische Public-Health-Maßnahmen zur Eindämmung der COVID-19 Pandemie stärker in den Fokus.

Studienziele Ziel dieses Rapid Reviews war es, den Effekt von Quarantäne – alleine oder in Kombination mit weiteren Public-Health-Maßnahmen – zur Eindämmung von COVID-19 zu untersuchen.

Methodik Der vorliegende Rapid Review wurde von der WHO in Auftrag gegeben. Um der Dringlichkeit der Anfrage gerecht zu werden, wurde die Methodik eines systematischen Reviews punktuell abgeändert. Die vorliegende Publikation umfasst die wichtigsten Aspekte des Rapid Reviews und wurde vom WHO Collaborating Centre an der Donau Universität Krems (Österreich) auf Deutsch übersetzt.

Ergebnisse Insgesamt wurden 29 Studien eingeschlossen. Zehn Modellierungsstudien befassten sich direkt mit COVID-19, 15 weitere Modellierungsstudien und 4 Beobachtungsstudien lieferten indirekte Evidenz zu SARS und MERS. Die Studien zeichneten alle ein ähnliches Bild – einen Vorteil von Quarantäne. Beispielsweise schätzten Modellierungsstudien, dass durch Quarantäne von Personen, die Kontakt mit Infizierten hatten 44–81% neuer Fälle und 31–63% an Todesfällen verhindert werden können, im Vergleich zu keinen Maßnahmen. Zwei Studien zu SARS zeigten, dass Quarantäne effektiver war und weniger kostete, je früher sie startete. Alleinige Quarantäne von Personen, die Kontakt mit Infizierten hatten, würde aber wahrscheinlich nicht ausreichen, um den Ausbruch von COVID-19 einzudämmen. Die Kombination mit anderen Maßnahmen wie physische Distanzierung oder Schulschließungen zeigte größere Effekte als Quarantäne alleine. Bei der individuellen Quarantäne für Rückkehrende aus Risikogebieten fand der Review vergleichsweise geringe Effekte.

Schlussfolgerung Die Vertrauenswürdigkeit der Evidenz ist niedrig bzw. sehr niedrig, da die einzigen Studien zu COVID-19 Modellierungsstudien sind, die zwar aktuelle aber noch unsichere und unterschiedliche Parameter zur Modellberechnung verwendeten. Die indirekte Evidenz von SARS und MERS ist nur begrenzt auf COVID-19 übertragbar. Trotz dieser Limitationen, kommen alle Studien zu dem Schluss, dass Quarantäne eine wichtige Maßnahme ist, um die Pandemie einzudämmen. Im Hinblick auf die kommenden Monate ist es wichtig, das Infektionsgeschehen sowie die Auswirkungen der Maßnahmen genau zu überwachen, um die bestmögliche Balance der Maßnahmen zu finden.

Abstract

BackgroundCOVID-19 (coronavirus disease 2019) is a new, rapidly emerging zoonotic infectious disease, that was reported to the World Health Organization for the first time on 31 December 2019. Currently, no effective pharmacological interventions or vaccines are available to treat or prevent COVID-19, therefore nonpharmacological public health measures are more in focus.

ObjectivesThe aim was to assess the effects of quarantine – alone or in combination with other measures – during coronavirus outbreaks.

MethodsBecause of the current COVID-19 pandemic, WHO commissioned a rapid review. To save time, the method of systematic reviews was slightly and with caution modified. This publication is a summary of the most important aspects of the rapid review, translated into German by members of the WHO Collaborating Centre at the Danube University Krems (Austria).

ResultsOverall, 29 studies were included. Ten modeling studies focused on COVID-19, 4 observational studies and 15 modeling studies focused on SARS and MERS. The modeling studies consistently reported a benefit of the simulated quarantine measures. For example, the models estimated that quarantine of people exposed to confirmed or suspected cases of COVID-19 prevented between 44 and 81% of the cases that would otherwise have happened and 31 to 63% of the deaths, when compared to no such measures. In regard to costs, the earlier the quarantine measures are implemented, the greater the cost savings will be.

ConclusionOur confidence in the evidence is very limited. This is mainly because the COVID-19 studies based their models on the limited data that have been available in the early weeks of the pandemic and made different assumptions about the virus. The studies of SARS and MERS are not completely generalizable to COVID-19. Despite only having limited evidence, all the studies found quarantine to be important for controlling the spread of severe coronavirus diseases. Looking to the coming months, in order to maintain the best possible balance of measures, decision makers must continue to constantly monitor the outbreak situation and the impact of the measures they implement.



Publikationsverlauf

Artikel online veröffentlicht:
15. Mai 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Nussbaumer-Streit B, Mayr V, Dobrescu AI. et al. Quarantine alone or in combination with other public health measures to control COVID-19: A rapid review. Cochrane Database Syst Rev 2020; 4: CD013574
  • 2 World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
  • 3 WHO Rolling updates on coronavirus diseases (COVID-19). www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen2020
  • 4 World Health Organization Global research on coronavirus disease (COVID-19). Available from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
  • 5 Guyatt GH, Oxman AD, Vist GE. et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ (Clinical research ed) 2008; 336: 924-926
  • 6 Schünemann H, Brożek J, Guyatt G. et al. GRADE handbook for grading quality of evidence and strength of recommendations Updated. 2013 Available from:www.guidelinedevelopment.org/handbook
  • 7 Schunemann HJ, Mustafa RA, Brozek J. et al. GRADE guidelines: 21 part 1. Study design, risk of bias, and indirectness in rating the certainty across a body of evidence for test accuracy. J Clin Epidemiol. 2020
  • 8 Schunemann HJ, Mustafa RA, Brozek J. et al. GRADE guidelines: 21 part 2. Test accuracy: inconsistency, imprecision, publication bias, and other domains for rating the certainty of evidence and presenting it in evidence profiles and summary of findings tables. J Clin Epidemiol. 2020
  • 9 Shengli CAO, Peihua FENG, Pengpeng S. Study on the Epidemic Development of Corona Virus Disease-19 (COVID-19) in Hubei Province by a Modified SEIR Model. Journal of Zhejiang University (Medical Sciences). 2020
  • 10 Choi SC, Ki M. Estimating the reproductive number and the outbreak size of Novel Coronavirus disease (COVID-19) using mathematical model in Republic of Korea. Epidemiology and Health 2020; e2020011
  • 11 Fang Y, Nie Y, Penny M. Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: A data-driven analysis. J Med Virol 2020; 06
  • 12 Ferguson NM, Laydon D, Nedjati-Gilani G. et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand. 2020 Available from: https://sciencebusiness.net/sites/default/files/inline-files/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
  • 13 Geng H, Xu A, Wang X. Analysis of the role of current prevention and control measures in the epidemic of new coronavirus based on SEIR model. Journal of Jinan University (Natural Science & Medicine Edition) 2020; 41: 1-7
  • 14 Rocklov J, Sjodin H, Wilder-Smith A. COVID-19 outbreak on the Diamond Princess cruise ship: Estimating the epidemic potential and effectiveness of public health countermeasures. Journal of Travel Medicine 2020; 28: 28
  • 15 Tang B, Wang X, Li Q. et al. Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. Journal of Clinical Medicine 2020; 9: 07
  • 16 Wen-Tao WUD-NL, Li LI. et al. Analysis of the role of different intensity prevention and control measures in the current epidemic of novel coronavirus (2019-nCoV) infected pneumonia in Wuhan based on SIR model. New Medicine 2020; 30: 78-82
  • 17 Yue YCY, Liu K, Luo X. et al. Modeling and prediction of new coronavirus pneumonia base time-delay dynamic system. Scientia Sinica Mathematica 2020; 50: 1-8
  • 18 Zhao S, Chen H. Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quantitative Biology 2020; 1-9
  • 19 Hsieh YH, King CC, Chen CW. et al. Quarantine for SARS, Taiwan. Emerging Infectious Diseases 2005; 11: 278-282
  • 20 Pang X, Zhu Z, Xu F. et al. Evaluation of control measures implemented in the severe acute respiratory syndrome outbreak in Beijing, 2003. JAMA 2003; 290: 3215-3221
  • 21 Park HC, Lee SH, Kim J. et al. Effect of isolation practice on the transmission of middle east respiratory syndrome coronavirus among hemodialysis patients: A 2-year prospective cohort study. Medicine 2020; 99: e18782
  • 22 Wang TH, Wei KC, Hsiung CA. et al. Optimizing severe acute respiratory syndrome response strategies: lessons learned from quarantine. American Journal of Public Health 2007; 97 (Suppl. 01) 98-100
  • 23 Becker NG, Glass K, Li Z. et al. Controlling emerging infectious diseases like SARS. Mathematical Biosciences 2005; 193: 205-221.
  • 24 Chau PH, Yip PS. Monitoring the severe acute respiratory syndrome epidemic and assessing effectiveness of interventions in Hong Kong Special Administrative Region. Journal of Epidemiology & Community Health 2003; 57: 766-769
  • 25 Day T, Park A, Madras N. et al. When is quarantine a useful control strategy for emerging infectious diseases?. American Journal of Epidemiology 2006; 163: 479-485.
  • 26 Fraser C, Riley S, Anderson RM. et al. Factors that make an infectious disease outbreak controllable. Proceedings of the National Academy of Sciences of the United States of America 2004; 101: 6146-6151
  • 27 Gumel AB, Ruan S, Day T. et al. Modelling strategies for controlling SARS outbreaks. Proceedings of the Royal Society of London – Series B: Biological Sciences 2004; 271: 2223-2232
  • 28 Gupta AG, Moyer CA, Stern DT. The economic impact of quarantine: SARS in Toronto as a case study. Journal of Infection 2005; 50: 386-93.
  • 29 Hsieh YH, King CC, Chen CW. et al. Impact of quarantine on the 2003 SARS outbreak: a retrospective modeling study. Journal of Theoretical Biology 2007; 244: 729-736
  • 30 Lloyd-Smith JO, Galvani AP, Getz WM. Curtailing transmission of severe acute respiratory syndrome within a community and its hospital. Proceedings of the Royal Society of London – Series B: Biological Sciences 2003; 270: 1979-1989
  • 31 Mubayi A, Zaleta CK, Martcheva M. et al. A cost-based comparison of quarantine strategies for new emerging diseases. Mathematical Biosciences & Engineering: MBE 2010; 7: 687-717
  • 32 Nishiura H, Patanarapelert K, Sriprom M. et al. Modelling potential responses to severe acute respiratory syndrome in Japan: The role of initial attack size, precaution, and quarantine. Journal of Epidemiology & Community Health 2004; 58: 186-191
  • 33 Peak CM, Childs LM, Grad YH. et al. Comparing nonpharmaceutical interventions for containing emerging epidemics. Proceedings of the National Academy of Sciences of the United States of America 2017; 114: 4023-4028
  • 34 Pourbohloul B, Meyers LA, Skowronski DM. et al. Modeling control strategies of respiratory pathogens. Emerging Infectious Diseases 2005; 11: 1249-1256
  • 35 Wang W, Ruan S. Simulating the SARS outbreak in Beijing with limited data. Journal of Theoretical Biology 2004; 227: 369-379
  • 36 Yip PS, Hsieh YH, Xu Y. et al. Assessment of intervention measures for the 2003 SARS epidemic in Taiwan by use of a back-projection method. Infection Control & Hospital Epidemiology 2007; 28: 525-530
  • 37 Zhang XS, Pebody R, Charlett A. et al. Estimating and modelling the transmissibility of Middle East Respiratory Syndrome CoronaVirus during the 2015 outbreak in the Republic of Korea. Influenza & Other Respiratory Viruses 2017; 11: 434-44.
  • 38 Gartlehner G, Affengruber L, Titscher V. et al. Single-reviewer abstract screening missed 13 percent of relevant studies: a crowd-based, randomized controlled trial. J Clin Epidemiol 2020; 121: 20-28