Planta Med 2020; 86(15): 1097-1107
DOI: 10.1055/a-1171-8357
Biological and Pharmacological Activity
Original Papers

Characterization of a Structural Leoligin Analog as Farnesoid X Receptor Agonist and Modulator of Cholesterol Transport[ # ]

Angela Ladurner
1   Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
,
Thomas Linder
2   Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
,
Limei Wang
1   Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
,
Verena Hiebl
1   Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
,
Daniela Schuster
3   Department of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
4   Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Salzburg, Austria
,
Michael Schnürch
2   Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
,
Marko D. Mihovilovic
2   Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
,
Atanas G. Atanasov
1   Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
5   Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
6   Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
7   Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
,
Verena M. Dirsch
1   Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
› Author Affiliations
Supported by: Hochschuljubiläumsstiftung der Stadt Wien H-268438/2018
Supported by: Austrian Science Fund S10704
Supported by: Austrian Science Fund S10710
Supported by: Austrian Science Fund S10711

Abstract

The ligand-activated farnesoid X receptor is an emerging therapeutic target for the development of drugs against metabolic syndrome-related diseases. In this context, selective bile acid receptor modulators represent a novel concept for drug development. Selective bile acid receptor modulators act in a target gene- or tissue-specific way and are therefore considered less likely to elicit unwanted side effects. Based on leoligin, a lignan-type secondary plant metabolite from the alpine plant Leontopodium nivale ssp. alpinum, 168 synthesized structural analogs were screened in a farnesoid X receptor in silico pharmacophore-model. Fifty-six virtual hits were generated. These hits were tested in a cell-based farnesoid X receptor transactivation assay and yielded 7 farnesoid X receptor-activating compounds. The most active one being LT-141A, with an EC50 of 6 µM and an Emax of 4.1-fold. This analog did not activate the G protein-coupled bile acid receptor, TGR5, and the metabolic nuclear receptors retinoid X receptor α, liver X receptors α/β, and peroxisome proliferator-activated receptors β/γ. Investigation of different farnesoid X receptor target genes characterized LT-141A as selective bile acid receptor modulators. Functional studies revealed that LT-141A increased cholesterol efflux from THP-1-derived macrophages via enhanced ATP-binding cassette transporter 1 expression. Moreover, cholesterol uptake in differentiated Caco-2 cells was significantly decreased upon LT-141A treatment. In conclusion, the leoligin analog LT-141A selectively activates the nuclear receptor farnesoid X receptor and has an influence on cholesterol transport in 2 model systems.

# Dedicated to Professor Dr. Wolfgang Kubelka on the occasion of his 85th birthday.


Supporting Information



Publication History

Received: 14 January 2020

Accepted: 05 May 2020

Article published online:
02 June 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 WHO. Fact sheet on Obesity; 2016. Available at (Accessed December 15, 2019): https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight
  • 2 Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science 1999; 284: 1362-1365
  • 3 Chow MD, Lee YH, Guo GL. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol Aspects Med 2017; 56: 34-44
  • 4 Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 2012; 13: 213-224
  • 5 Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, Evans RM, Weinberger C. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995; 81: 687-693
  • 6 Renga B, Migliorati M, Mencarelli A, Fiorucci S. Reciprocal regulation of the bile acid-activated receptor FXR and the interferon-gamma-STAT-1 pathway in macrophages. Biochim Biophys Acta 2009; 1792: 564-573
  • 7 De Magalhaes Filho CD, Downes M, Evans RM. Farnesoid X receptor an emerging target to combat obesity. Dig Dis 2017; 35: 185-190
  • 8 Massafra V, Pellicciari R, Gioiello A, van Mil SWC. Progress and challenges of selective farnesoid X receptor modulation. Pharmacol Ther 2018; 191: 162-177
  • 9 Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M, Adorini L, Sciacca CI, Clopton P, Castelloe E, Dillon P, Pruzanski M, Shapiro D. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 2013; 145: 574-582.e1
  • 10 Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, Chalasani N, Dasarathy S, Diehl AM, Hameed B, Kowdley KV, McCullough A, Terrault N, Clark JM, Tonascia J, Brunt EM, Kleiner DE, Doo E, Network NCR. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015; 385: 956-965
  • 11 Merk D, Sreeramulu S, Kudlinzki D, Saxena K, Linhard V, Gande SL, Hiller F, Lamers C, Nilsson E, Aagaard A, Wissler L, Dekker N, Bamberg K, Schubert-Zsilavecz M, Schwalbe H. Molecular tuning of farnesoid X receptor partial agonism. Nat Commun 2019; 10: 2915
  • 12 Hiebl V, Ladurner A, Latkolik S, Dirsch VM. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol Adv 2018; 36: 1657-1698
  • 13 Duwensee K, Schwaiger S, Tancevski I, Eller K, van Eck M, Markt P, Linder T, Stanzl U, Ritsch A, Patsch JR, Schuster D, Stuppner H, Bernhard D, Eller P. Leoligin, the major lignan from Edelweiss, activates cholesteryl ester transfer protein. Atherosclerosis 2011; 219: 109-115
  • 14 Scharinger B, Messner B, Turkcan A, Schuster D, Vuorinen A, Pitterl F, Heinz K, Arnhard K, Laufer G, Grimm M, Stuppner H, Oberacher H, Eller P, Ritsch A, Bernhard D. Leoligin, the major lignan from Edelweiss, inhibits 3-hydroxy-3-methyl-glutaryl-CoA reductase and reduces cholesterol levels in ApoE/ mice. J Mol Cell Cardiol 2016; 99: 35-46
  • 15 Wang L, Ladurner A, Latkolik S, Schwaiger S, Linder T, Hosek J, Palme V, Schilcher N, Polansky O, Heiss EH, Stangl H, Mihovilovic MD, Stuppner H, Dirsch VM, Atanasov AG. Leoligin, the major lignan from Edelweiss (Leontopodium nivale subsp. alpinum), promotes cholesterol efflux from THP-1 macrophages. J Nat Prod 2016; 79: 1651-1657
  • 16 Waltenberger B, Atanasov AG, Heiss EH, Bernhard D, Rollinger JM, Breuss JM, Schuster D, Bauer R, Kopp B, Franz C, Bochkov V, Mihovilovic MD, Dirsch VM, Stuppner H. Drugs from nature targeting inflammation (DNTI): a successful Austrian interdisciplinary network project. Monatsh Chem 2016; 147: 479-491
  • 17 Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 2015; 33: 1582-1614
  • 18 Linder T, Liu R, Atanasov AG, Li Y, Geyrhofer S, Schwaiger S, Stuppner H, Schnurch M, Dirsch VM, Mihovilovic MD. Leoligin-inspired synthetic lignans with selectivity for cell-type and bioactivity relevant for cardiovascular disease. Chem Sci 2019; 10: 5815-5820
  • 19 Schuster D, Markt P, Grienke U, Mihaly-Bison J, Binder M, Noha SM, Rollinger JM, Stuppner H, Bochkov VN, Wolber G. Pharmacophore-based discovery of FXR agonists. Part I: model development and experimental validation. Bioorg Med Chem 2011; 19: 7168-7180
  • 20 Li G, Kong B, Zhu Y, Zhan L, Williams JA, Tawfik O, Kassel KM, Luyendyk JP, Wang L, Guo GL. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice. Toxicol Appl Pharmacol 2013; 272: 299-305
  • 21 Baker AD, Malur A, Barna BP, Kavuru MS, Malur AG, Thomassen MJ. PPARgamma regulates the expression of cholesterol metabolism genes in alveolar macrophages. Biochem Biophys Res Commun 2010; 393: 682-687
  • 22 Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7: 161-171
  • 23 Aravindhan K, Webb CL, Jaye M, Ghosh A, Willette RN, DiNardo NJ, Jucker BM. Assessing the effects of LXR agonists on cellular cholesterol handling: a stable isotope tracer study. J Lipid Res 2006; 47: 1250-1260
  • 24 Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 2000; 275: 28240-28245
  • 25 Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, Shan B, Heyman RA, Dietschy JM, Mangelsdorf DJ. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 2000; 289: 1524-1529
  • 26 Schwartz K, Lawn RM, Wade DP. ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR. Biochem Biophys Res Commun 2000; 274: 794-802
  • 27 Mandal PK, Maiti G, Roy SC. Stereoselective synthesis of polysubstituted tetrahydrofurans by radical cyclization of epoxides using a transition-metal radical source. application to the total synthesis of (±)-methylenolactocin and (±)-protolichesterinic acid. J Org Chem 1998; 63: 2829-2834
  • 28 RajanBabu TV, Nugent WA. Selective generation of free radicals from epoxides using a transition-metal radical. a powerful new tool for organic synthesis. J Am Chem Soc 1994; 116: 986-997
  • 29 Wang L, Palme V, Rotter S, Schilcher N, Cukaj M, Wang D, Ladurner A, Heiss EH, Stangl H, Dirsch VM, Atanasov AG. Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP-1-derived macrophages. Mol Nutr Food Res 2017; 61: 1500960
  • 30 Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31: 455-461
  • 31 Flatt B, Martin R, Wang TL, Mahaney P, Murphy B, Gu XH, Foster P, Li J, Pircher P, Petrowski M, Schulman I, Westin S, Wrobel J, Yan G, Bischoff E, Daige C, Mohan R. Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR). J Med Chem 2009; 52: 904-907