Handchir Mikrochir Plast Chir 2020; 52(06): 505-517
DOI: 10.1055/a-1183-4532
Übersichtsarbeit

Einsatzmöglichkeiten der freien mikrochirurgischen Fibulatransplantation in der Rekonstruktion komplexer ossärer Defekte an den Extremitäten – Literaturübersicht und Fallserie

Possible applications of free microsurgical fibula transplantation in the reconstruction of complex bone defects in the extremities: review of the literature and case series
Michael Sauerbier
1   PROFESSOR SAUERBIER, Privatärztliche Praxis für Hand- und Plastische Chirurgie, Bad Homburg v. d. Höhe
,
2   Berufsgenossenschaftliche Unfallklinik Frankfurt am Main, Abteilung für Plastische, Hand- und ­Rekonstruktive Chirurgie
,
Reinhard Hoffmann
3   Berufsgenossenschaftliche Unfallklinik Frankfurt am Main, Unfallchirurgie und Orthopädische Chirurgie
,
Nikolai Kuz
2   Berufsgenossenschaftliche Unfallklinik Frankfurt am Main, Abteilung für Plastische, Hand- und ­Rekonstruktive Chirurgie
› Author Affiliations

Zusammenfassung

Hintergrund Langstreckige ossäre Defekte der Extremitäten nach Trauma und Tumorresektion stellen eine große Herausforderung an das plastisch-rekonstruktiv tätige Chirurgenteam dar. Die Defektrekonstruktion mittels freier mikrochirurgischer Fibulatransplantation ist eine Standardmethode, bleibt jedoch mit einer nicht unerheblichen Komplikationsrate behaftet. Ziel der vorliegenden Arbeit ist es, eine aktuelle Übersicht zu den diversen Rekonstruktionsverfahren zu geben und anhand einer persönlichen Fallserie die eigenen Erfahrungen mit der freien Fibulatransplantation mitzuteilen.

Patienten und Methoden Die Literaturrecherche zum Thema erfolgte über Pubmed und Web of Science, die retrospektive Datenerhebung des Eigenkollektivs des Seniorautors (MS) unter Einbeziehung von klinischen und radiologischen Daten.

Ergebnisse Von 2007 bis 2018 wurde bei 11 Patienten eine freie Fibulatransplantation durchgeführt. In 4 Fällen war eine Pseudarthrose, in 3 eine Osteitis und in 2 Fällen ein Tumor für die Defektentstehung an den Extremitätenknochen ursächlich. Bei 2 Patienten lag eine Defektfraktur infolge eines Hochenergietraumas vor. In 9 Fällen war die obere, in 2 die untere Extremität betroffen. Bei 4 Patienten wurde ein osteoseptokutanes Transplantat entnommen, bei 2 davon kam es zum Verlust der Hautinsel postoperativ. Die Längen der Fibulatransplantate betrugen zwischen 5 und 22 cm. In allen Fällen war die knöcherne Integration des Transplantats vollständig. Das nach Physiotherapie erzielte Bewegungsausmaß der betroffenen Extremität war sehr gut bis befriedigend.

Schlussfolgerung Die langstreckige ossäre Defektrekonstruktion mittels freier Fibula ist zweifelsohne eine Standardmethode, bedarf bei beschriebener hoher Komplikationsrate eine strenge Indikationsstellung unter Berücksichtigung alternativer Verfahren. Eine enge Kooperation zwischen plastisch-rekonstruktiven und unfallchirurgisch-orthopädischen Disziplinen ist unverzichtbar.

Abstract

Background Extensive osseous defects of the extremities following trauma and tumour resection represent a major challenge for plasticreconstructive surgical teams. Defect reconstruction by free microsurgical fibula transplantation has become a standard method but is associated with a considerable rate of complications. The aim of the present work is to provide an up-to-date overview of the various reconstruction methods and to report our personal experiences with free fibula transplantation in a case series.

Patients and Methods The literature search on the subject was performed on Pubmed and Web of Science, and a retrospective collection of data was conducted based on our own cases, including clinical and radiological data.

Results From 2007 to 2018, free fibula transplantation was performed in 11 patients under the guidance of the senior author (MS). The defects were a result of pseudarthrosis in four cases, osteitis in three, and a tumour in two cases. Two patientssustained a primary defect due to a high-energy trauma. In nine cases the upper limb was affected; only two had the defect in the lower limb. No graft failure was observed. In eight cases, an osteoseptocutaneous graft was taken; in two cases there was a post-operative loss of the skin island. Fibula length ranged between 5 and 22 cm. In all cases, bony integration of the graft was complete. The range of motion in the affected limb after physiotherapy was very good to satisfactory.

Conclusion Extensive bone defect reconstruction using free fibula flaps is undoubtedly the gold standard method, but the high rate of complications described in the literature necessitates a strict indication in due consideration of possible alternatives. Close cooperation between the disciplines of plastic reconstructive surgery and trauma orthopaedics is indispensable.



Publication History

Received: 27 February 2020

Accepted: 06 May 2020

Article published online:
20 August 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Taylor GI, Daniel RK. The free flap: composite tissue transfer by vascular anastomosis. Aust N Z J Surg 1973; 43: 1-3
  • 2 Taylor GI, Miller GD, Ham FJ. The free vascularized bone graft. A clinical extension of microvascular techniques. Plast Reconstr Surg 1975; 55: 533-544
  • 3 Bahr W, Stoll P, Wachter R. Use of the “double barrel” free vascularized fibula in mandibular reconstruction. J Oral Maxillofac Surg 1998; 56: 38-44
  • 4 Ad-El DD, Paizer A, Pidhortz C. Bipedicled vascularized fibula flap for proximal humerus defect in a child. Plast Reconstr Surg 2001; 107: 155-157
  • 5 Koshima I, Hosoda S, Inagawa K. et al. Free combined anterolateral thigh flap and vascularized fibula for wide, through-and-through oromandibular defects. J Reconstr Microsurg 1998; 14: 529-534
  • 6 Malizos KN, Beris AE, Xenakis TA. et al. Free vascularized fibular graft: a versatile graft for reconstruction of large skeletal defects and revascularization of necrotic bone. Microsurgery 1992; 13: 182-187
  • 7 Newington DP, Sykes PJ. The versatility of the free fibula flap in the management of traumatic long bone defects. Injury 1991; 22: 275-281
  • 8 Erdmann D, Giessler GA, Bergquist GE. et al. Free fibula transfer. Analysis of 76 consecutive microsurgical procedures and review of the literature. Chirurg 2004; 75: 799-809
  • 9 Eckardt A, Fokas K. Microsurgical reconstruction in the head and neck region: an 18-year experience with 500 consecutive cases. J Craniomaxillofac Surg 2003; 31: 197-201
  • 10 Kremer T, Bickert B, Germann G. et al. Outcome assessment after reconstruction of complex defects of the forearm and hand with osteocutaneous free flaps. Plast Reconstr Surg 2006; 118: 443-454 discussion 455–446
  • 11 Eisenschenk A, Kern O, Lehnert M. et al. Free vascularized muscle flap transplantation in the treatment of chronic osteomyelitis. Chir Organi Mov 1994; 79: 139-146
  • 12 Eisenschenk A, Lautenbach M, Rohlmann A. Free vascularized bone transplantation in the extremities. Orthopade 1998; 27: 491-500
  • 13 Andreas T, Ralf G, Rudolf A. et al. S2k – Leitlinie zur Akuten und chronischen exogenen Osteomyelitis langer Röhrenknochen des Erwachsenen. AWMF-Nr 012–033; 2017
  • 14 Brown KL. Limb reconstruction with vascularized fibular grafts after bone tumor resection. Clin Orthop Relat Res 1991; DOI: 64-73
  • 15 Ihara K, Doi K, Yamamoto M. et al. Free vascularized fibular grafts for large bone defects in the extremities after tumor excision. J Reconstr Microsurg 1998; 14: 371-376
  • 16 Giessler GA, Bickert B, Sauerbier M. et al. Free microvascular fibula graft for skeletal reconstruction after tumor resections in the forearm – experience with five cases. Handchir Mikrochir Plast Chir 2004; 36: 301-307
  • 17 Yuceturk G, Sabah D, Kececi B. et al. Prevalence of bone and soft tissue tumors. Acta Orthop Traumatol Turc 2011; 45: 135-143
  • 18 Jackson TM, Bittman M, Granowetter L. Pediatric Malignant Bone Tumors: A Review and Update on Current Challenges, and Emerging Drug Targets. Curr Probl Pediatr Adolesc Health Care 2016; 46: 213-228
  • 19 Han CS, Wood MB, Bishop AT. et al. Vascularized bone transfer. J Bone Joint Surg Am 1992; 74: 1441-1449
  • 20 Campana V, Milano G, Pagano E. et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 2014; 25: 2445-2461
  • 21 Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 2002; 84-A: 454-464
  • 22 Pfeifer R, Kobbe P, Knobe M. et al. The reamer-irrigator-aspirator (RIA) System. Oper Orthop Traumatol 2011; 23: 446-452
  • 23 Draenert ME, Draenert Y, Draenert K. et al. Primary cancellous bone formation around micro-chambered beads. Rev Esp Cir Ortop Traumatol 2014; 58: 131-137
  • 24 Midha S, Kumar S, Sharma A. et al. Silk fibroin-bioactive glass based advanced biomaterials: towards patient-specific bone grafts. Biomed Mater 2018; 13: 055012
  • 25 Bunpetch V, Zhang X, Li T. et al. Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect. Biomaterials 2018; 192: 323-333
  • 26 Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2017; 2: 224-247
  • 27 Glatzel U, Heppert V, Wentzensen A. Kallusdistraktion. Trauma und Berufskrankheit 2002; 4: 404-412
  • 28 Baumgart R, Schuster B, Baumgart T. Callus distraction and bone transport in the treatment of bone defects. Orthopade 2017; 46: 673-680
  • 29 Ilizarov GA. Basic principles of transosseous compression and distraction osteosynthesis. Ortop Travmatol Protez 1971; 32: 7-15
  • 30 Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 2010; 41: 27-37 table of contents
  • 31 Stafford PR, Norris BL. Reamer-irrigator-aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury 2010; 41 Suppl 2 S72-77
  • 32 Walker M, Sharareh B, Mitchell SA. Masquelet Reconstruction for Posttraumatic Segmental Bone Defects in the Forearm. J Hand Surg Am 2018;
  • 33 Daniel RK, Weiland AJ. Free tissue transfers for upper extremity reconstruction. J Hand Surg Am 1982; 7: 66-76
  • 34 Watson JT, Anders M, Moed BR. Management strategies for bone loss in tibial shaft fractures. Clin Orthop Relat Res 1995; DOI: 138-152
  • 35 Erdmann D, Pu CM, Levin LS. Nonunion of the clavicle: a rare indication for vascularized free fibula transfer. Plast Reconstr Surg 2004; 114: 1859-1863
  • 36 Abarca J, Valle P, Valenti P. Clavicular reconstruction with free fibula flap: a report of four cases and review of the literature. Injury 2013; 44: 283-287
  • 37 Chang MC, Lo WH, Chen CM. et al. Treatment of large skeletal defects in the lower extremities using double-strut, free vascularized fibular bone grafting. Orthopedics 1999; 22: 739-744
  • 38 Landau MJ, Badash I, Yin C. et al. Free vascularized fibula grafting in the operative treatment of malignant bone tumors of the upper extremity: A systematic review of outcomes and complications. J Surg Oncol 2018; 117: 1432-1439
  • 39 de Boer HH, Wood MB, Hermans J. Reconstruction of large skeletal defects by vascularized fibula transfer. Factors that influenced the outcome of union in 62 cases. Int Orthop 1990; 14: 121-128
  • 40 Yajima H, Tamai S, Ono H. et al. Free vascularized fibula grafts in surgery of the upper limb. J Reconstr Microsurg 1999; 15: 515-521
  • 41 Babovic S, Johnson CH, Finical SJ. Free fibula donor-site morbidity: the Mayo experience with 100 consecutive harvests. J Reconstr Microsurg 2000; 16: 107-110
  • 42 Meagher PJ, Morrison WA. Free fibula flap-donor-site morbidity: case report and review of the literature. J Reconstr Microsurg 2002; 18: 465-468 discussion 469–470
  • 43 Asmus A, Kim S, Höpfner J-I. et al. Freie Fibulatransplantation zur knöchernen Rekonstruktion an der oberen Extremität. Handchir Scan 2019; 07 (03) 231-242
  • 44 Lee JH, Chung CY, Myoung H. et al. Gait analysis of donor leg after free fibular flap transfer. Int J Oral Maxillofac Surg 2008; 37: 625-629
  • 45 Maurer-Ertl W, Glehr M, Friesenbichler J. et al. No adverse affect after harvesting of free fibula osteoseptocutaneous flaps on gait function. Microsurgery 2012; 32: 364-369
  • 46 Arai K, Toh S, Tsubo K. et al. Complications of vascularized fibula graft for reconstruction of long bones. Plast Reconstr Surg 2002; 109: 2301-2306
  • 47 van Gemert JTM, Abbink JH, van Es RJJ. et al. Early and late complications in the reconstructed mandible with free fibula flaps. J Surg Oncol 2018; 117: 773-780
  • 48 Graham RG, Swan MC, Hudson DA. et al. The fibula free flap: advantages of the muscle sparing technique. Br J Plast Surg 2003; 56: 388-394
  • 49 Coghlan BA, Townsend PL. The morbidity of the free vascularised fibula flap. Br J Plast Surg 1993; 46: 466-469
  • 50 Innocenti M, Abed YY, Beltrami G. et al. Biological reconstruction after resection of bone tumors of the proximal tibia using allograft shell and intramedullary free vascularized fibular graft: long-term results. Microsurgery 2009; 29: 361-372
  • 51 Mohler DG, Yaszay B, Hong R. et al. Intercalary tibial allografts following tumor resection: the role of fibular centralization. Orthopedics 2003; 26: 631-637
  • 52 Innocenti M, Delcroix L, Romano GF. Epiphyseal transplant: harvesting technique of the proximal fibula based on the anterior tibial artery. Microsurgery 2005; 25: 284-292
  • 53 Bauer AS, Singh AK, Amanatullah D. et al. Free vascularized fibular transfer with langenskiold procedure for the treatment of congenital pseudarthrosis of the forearm. Techniques in hand & upper extremity surgery 2013; 17: 144-150