Subscribe to RSS
DOI: 10.1055/a-1197-0136
Positionspapier: Anwendung von Biologika bei chronischer Rhinosinusitis mit Polyposis nasi (CRSwNP) im deutschen Gesundheitssystem – Empfehlungen des Ärzteverbandes Deutscher Allergologen (AeDA) und der AGs Klinische Immunologie, Allergologie und Umweltmedizin und Rhinologie und Rhinochirurgie der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Halschirurgie (DGHNOKHC)
Zusammenfassung
Hintergrund Die chronische Rhinosinusitis (CRS) betrifft weltweit ca. 5–12 % der Allgemeinbevölkerung und wird traditionell eingeteilt in einen Phänotyp ohne (CRSsNP) und einen mit Ausbildung von Nasenpolypen (CRSwNP). Wurden Nasenpolypen bis vor kurzem eher als mechanisches Hindernis mit der Notwendigkeit einer operativen Beseitigung betrachtet, wird die CRSwNP heute als eine multifaktorielle entzündliche Erkrankung der nasalen und paranasalen Schleimhäute angesehen, der als Endotyp häufig eine T2-Inflammation zugrunde liegt. Biologika, die mit diesen Entzündungsmechanismen interferieren, stellen interessante neue Therapiemöglichkeiten dar.
Methoden Das aktuelle Wissen zur Immunologie der CRSwNP und Wirkung von Biologika wurde mittels einer Literaturanalyse durch Recherchen in Medline, PubMed sowie den nationalen und internationalen Studien- und Leitlinienregistern und der Cochrane Library zusammengestellt.
Ergebnisse Basierend auf der internationalen Literatur und bisherigen Erfahrungen werden von einem Expertengremium Empfehlungen für die Anwendung von Biologika bei CRSwNP im deutschen Gesundheitssystem auf der Grundlage eines Dokumentationsbogens gegeben.
Schlussfolgerung Das Verständnis über die immunologischen Grundlagen der CRSwNP eröffnet neue nichtoperative Therapieansätze mit Biologika für Patienten mit schweren Verlaufsformen.
Schlüsselwörter
chronische Rhinosinusitis - Endotyp-Klassifizierung - nasale Polypen - CRSwNP - Biologika - Benralizumab - Dupilumab - Mepolizumab - Omalizumab - ReslizumabPublication History
Article published online:
23 June 2020
© Georg Thieme Verlag KG
Stuttgart · New York
-
Literatur
- 1 Hastan D. et al. Chronic rhinosinusitis in Europe – an underestimated disease. A GA²LEN study. Allergy 2011; 66 (09) 1216-1223
- 2 Hirsch AG. et al. Nasal and sinus symptoms and chronic rhinosinusitis in a population-based sample. Allergy 2017; 72 (02) 274-281
- 3 Ostovar A. et al. Epidemiology of chronic rhinosinusitis in Bushehr, southwestern region of Iran: a GA2LEN study. Rhinology 2019; 57 (01) 43-48
- 4 Shi JB. et al. Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities. Allergy 2015; 70 (05) 533-539
- 5 Fokkens WJ. et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinol Suppl 2012; 23: 3p preceding table of contents, 1–298
- 6 Stuck BA. et al. Guideline for "rhinosinusitis"-long version: S2k guideline of the German College of General Practitioners and Family Physicians and the German Society for Oto-Rhino-Laryngology, Head and Neck Surgery. HNO 2018; 66 (01) 38-74
- 7 Fokkens WJ. et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 2012; 50 (01) 1-12
- 8 Rosenfeld RM. Clinical practice guideline on adult sinusitis. Otolaryngology – head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery 2007; 137 (03) 365-377
- 9 Koennecke M. et al. Subtyping of polyposis nasi: phenotypes, endotypes and comorbidities. Allergo journal international 2018; 27 (02) 56-56
- 10 Tomassen P. et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. The Journal of allergy and clinical immunology 2016; 137 (05) 1449-1456.e4
- 11 Calus L. et al. Local inflammation in chronic upper airway disease. Current pharmaceutical design 2012; 18 (16) 2336-2346
- 12 Liao B. et al. Multidimensional endotypes of chronic rhinosinusitis and their association with treatment outcomes. Allergy 2018; 73 (07) 1459-1469
- 13 Philpott CM. et al. Prevalence of asthma, aspirin sensitivity and allergy in chronic rhinosinusitis: data from the UK National Chronic Rhinosinusitis Epidemiology Study. Respiratory research 2018; 19 (01) 129
- 14 Wu D. et al. Clinical Phenotypes of Nasal Polyps and Comorbid Asthma Based on Cluster Analysis of Disease History. J Allergy Clin Immunol Pract 2018; 6 (04) 1297-1305.e1
- 15 Khan A. et al. The Global Allergy and Asthma European Network (GALEN rhinosinusitis cohort: a large European cross-sectional study of chronic rhinosinusitis patients with and without nasal polyps. Rhinology 2018; 57 (01) 32-42
- 16 Langdon C, Mullol J. Nasal polyps in patients with asthma: prevalence, impact, and management challenges. Journal of asthma and allergy 2016; 9: 45-53
- 17 Lin DC. et al. Association between severity of asthma and degree of chronic rhinosinusitis. American journal of rhinology & allergy 2011; 25 (04) 205-208
- 18 Shaw DE. et al. Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. The European respiratory journal 2015; 46 (05) 1308-1321
- 19 De Greve G. et al. Endotype-driven treatment in chronic upper airway diseases. Clinical and translational allergy 2017; 7: 22
- 20 Seys SF. et al. Cluster analysis of sputum cytokine-high profiles reveals diversity in T(h)2-high asthma patients. Respiratory research 2017; 18 (01) 39
- 21 Zhang Y. et al. Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL-5-positive chronic rhinosinusitis with nasal polyps. Allergy 2018; 74 (01) 131-140
- 22 Green RH. et al. Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 2002; 57 (10) 875-879
- 23 GINA, Global Strategy for Asthma Management and Prevention (2019 update). 2019 www.ginasthma.org
- 24 Orlandi RR. et al. International Consensus Statement on Allergy and Rhinology: Rhinosinusitis. International forum of allergy & rhinology 2016; 6 (Suppl. 01) S22-S209
- 25 Pundir V. et al. Role of corticosteroids in Functional Endoscopic Sinus Surgery--a systematic review and meta-analysis. Rhinology 2016; 54 (01) 3-19
- 26 Voorham J. et al. Healthcare resource utilization and costs associated with incremental systemic corticosteroid exposure in asthma. Allergy 2018; 74 (02) 273-283
- 27 Kirsche H, Klimek L. ASS-Intoleranz-Syndrom und persistierende Rhinosinusitis: Differentialdiagnostik und Therapie. Hno 2015; 63 (05) 357-363
- 28 Klimek L, Pfaar O. Aspirin intolerance: does desensitization alter the course of the disease?. Immunology and allergy clinics of North America 2009; 29 (04) 669-675
- 29 Kowalski ML. et al. Diagnosis and management of NSAID-Exacerbated Respiratory Disease (N-ERD)-a EAACI position paper. Allergy 2019; 74 (01) 28-39
- 30 Hopkins C. et al. Prevention of chronic rhinosinusitis. Rhinology 2018; 56 (04) 307-315
- 31 Kilty SJ. et al. Case-control study of endoscopic polypectomy in clinic (EPIC) versus endoscopic sinus surgery for chronic rhinosinusitis with polyps. Rhinology 2018; 56 (02) 155-157
- 32 Rudmik L. et al. Defining appropriateness criteria for endoscopic sinus surgery during management of uncomplicated adult chronic rhinosinusitis: a RAND/UCLA appropriateness study. Rhinology 2016; 54 (02) 117-128
- 33 Gandhi NA, Pirozzi G, Graham NMH. Commonality of the IL-4/IL-13 pathway in atopic diseases. Expert review of clinical immunology 2017; 13 (05) 425-437
- 34 Sanofi-Aventis_Deutschland_GmbH, Dupixent® 300 mg Injektionslösung in einer Fertigspritze, R.L.S. GmbH – Fachinformation. Rote Liste Service GmbH Frankfurt. 2020 21.
- 35 Annunziato F, Romagnani S. Heterogeneity of human effector CD4+ T cells. Arthritis research & therapy 2009; 11 (06) 257
- 36 Zygmunt B, Veldhoen M. T helper cell differentiation more than just cytokines. Advances in immunology 2011; 109: 159-196
- 37 Kaur D, Brightling C. OX40 / OX40 ligand interactions in T-cell regulation and asthma. Chest 2012; 141 (02) 494-499
- 38 Lane P. Role of OX40 signals in coordinating CD4 T cell selection, migration, and cytokine differentiation in T helper (Th)1 and Th2 cells. The Journal of experimental medicine 2000; 191 (02) 201-206
- 39 Plager DA. et al. Gene transcription changes in asthmatic chronic rhinosinusitis with nasal polyps and comparison to those in atopic dermatitis. PLoS One 2010; 5 (07) e11450
- 40 Van Zele T. et al. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 2006; 61 (11) 1280-1289
- 41 Kopf M. et al. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 1993; 362: 245-248
- 42 Ouyang W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 1998; 9 (05) 745-755
- 43 Danielsen A. et al. Interleukin 5, IL6, IL12, IFN-gamma, RANTES and Fractalkine in human nasal polyps, turbinate mucosa and serum. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology – Head and Neck Surgery 2006; 263 (03) 282-289
- 44 Derycke L. et al. Mixed T helper cell signatures in chronic rhinosinusitis with and without polyps. PloS one 2014; 9 (06) e97581
- 45 Li Z, Zhang Y, Sun B. Current understanding of Th2 cell differentiation and function. Protein Cell 2011; 2 (08) 604-611
- 46 Prussin C, Yin Y, Upadhyaya B. T(H)2 heterogeneity: Does function follow form?. J Allergy Clin Immunol 2010; 126 (06) 1094-1098
- 47 Bachert C. et al. IL-5 synthesis is upregulated in human nasal polyp tissue. J Allergy Clin Immunol 1997; 99 (06) 837-842
- 48 Bachert C. et al. Nasal polyposis: from cytokines to growth. Am J Rhinol 2000; 14 (05) 279-290
- 49 Hurst SM. et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001; 14 (06) 705-714
- 50 Jones SA. Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol 2005; 175 (06) 3463-3468
- 51 Kaplanski G. et al. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 2003; 24 (01) 25-29
- 52 Peters AT. et al. Evidence for altered activity of the IL-6 pathway in chronic rhinosinusitis with nasal polyps. The Journal of allergy and clinical immunology 2010; 125 (02) 397-403.e10
- 53 Keswani A. et al. Differential expression of interleukin-32 in chronic rhinosinusitis with and without nasal polyps. Allergy 2012; 67 (01) 25-32
- 54 Chong LY. et al. Intranasal steroids versus placebo or no intervention for chronic rhinosinusitis. The Cochrane database of systematic reviews 2016; 4: CD011996
- 55 Bai X. et al. IL-32 is a host protective cytokine against Mycobacterium tuberculosis in differentiated THP-1 human macrophages. J Immunol 2010; 184 (07) 3830-3840
- 56 Dinarello CA, Kim SH. IL-32, a novel cytokine with a possible role in disease. Ann Rheum Dis 2006; 65 (Suppl. 03) iii61-iii64
- 57 Kim SH. et al. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 2005; 22 (01) 131-142
- 58 Li W. et al. IL-32: a host proinflammatory factor against influenza viral replication is upregulated by aberrant epigenetic modifications during influenza A virus infection. J Immunol 2010; 185 (09) 5056-5065
- 59 Netea MG. et al. Mycobacterium tuberculosis induces interleukin-32 production through a caspase- 1/IL-18/interferon-gamma-dependent mechanism. PLoS Med 2006; 3 (08) e277
- 60 Nold MF. et al. Endogenous IL-32 controls cytokine and HIV-1 production. J Immunol 2008; 181 (01) 557-565
- 61 Chin D, Harvey RJ. Nasal polyposis: an inflammatory condition requiring effective anti-inflammatory treatment. Current opinion in otolaryngology & head and neck surgery 2013; 21 (01) 23-30
- 62 Kato A. Immunopathology of chronic rhinosinusitis. Allergology international: official journal of the Japanese Society of Allergology 2015; 64 (02) 121-130
- 63 Lam EPS. et al. IL-25/IL-33-responsive TH2 cells characterize nasal polyps with a default TH17 signature in nasal mucosa. The Journal of allergy and clinical immunology 2016; 137 (05) 1514-1524
- 64 Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 2008; 223: 20-38
- 65 Reh DD. et al. Treatment-recalcitrant chronic rhinosinusitis with polyps is associated with altered epithelial cell expression of interleukin-33. Am J Rhinol Allergy 2010; 24 (02) 105-109
- 66 Kim DK. et al. The role of interleukin-33 in chronic rhinosinusitis. Thorax 2017; 72 (07) 635-645
- 67 Cherry WB. et al. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J Allergy Clin Immunol 2008; 121 (06) 1484-1490
- 68 Castano R. et al. Evidence of association of interleukin-1 receptor-like 1 gene polymorphisms with chronic rhinosinusitis. Am J Rhinol Allergy 2009; 23 (04) 377-384
- 69 Mjosberg JM. et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 2011; 12 (11) 1055-1062
- 70 Robinette ML, Colonna M. Immune modules shared by innate lymphoid cells and T cells. J Allergy Clin Immunol 2016; 138 (05) 1243-1251
- 71 Kim HY. et al. Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol 2012; 129 (01) 216-227.e1–6
- 72 Morita H, Moro K, Koyasu S. Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol 2016; 138 (05) 1253-1264
- 73 Ho J. et al. Cellular comparison of sinus mucosa vs polyp tissue from a single sinus cavity in chronic rhinosinusitis. Int Forum Allergy Rhinol 2015; 5 (01) 14-27
- 74 Ho J. et al. Group 2 innate lymphoid cells (ILC2s) are increased in chronic rhinosinusitis with nasal polyps or eosinophilia. Clin Exp Allergy 2015; 45 (02) 394-403
- 75 Allen JS. et al. Characterization of the eosinophil chemokine RANTES in nasal polyps. Ann Otol Rhinol Laryngol 1998; 107 (05) 416-420
- 76 Beck LA. et al. Detection of the chemokine RANTES and endothelial adhesion molecules in nasal polyps. J Allergy Clin Immunol 1996; 98 (04) 766-780
- 77 Meyer JE. et al. The role of RANTES in nasal polyposis. Am J Rhinol 2005; 19 (01) 15-20
- 78 Davidsson A. et al. Positive identification in situ of mRNA expression of IL-6, and IL-12, and the chemotactic cytokine RANTES in patients with chronic sinusitis and polypoid disease. Clinical relevance and relation to allergy. Acta Otolaryngol 1996; 116 (04) 604-610
- 79 Kato A. et al. Evidence of a role for B cell-activating factor of the TNF family in the pathogenesis of chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2008; 121 (06) 1385-1392, 1392.e1–2
- 80 Polzehl D. et al. Distinct features of chronic rhinosinusitis with and without nasal polyps. Allergy 2006; 61 (11) 1275-1279
- 81 Patadia M. et al. Evaluation of the presence of B-cell attractant chemokines in chronic rhinosinusitis. Am J Rhinol Allergy 2010; 24 (01) 11-16
- 82 Mehuys E. et al. Self-medication in persistent rhinitis: overuse of decongestants in half of the patients. The journal of allergy and clinical immunology. In practice 2014; 2 (03) 313-319
- 83 Rudmik L, Soler ZM. Medical Therapies for Adult Chronic Sinusitis: A Systematic Review. Jama 2015; 314 (09) 926-939
- 84 Smith TL, Sautter NB. Is montelukast indicated for treatment of chronic rhinosinusitis with polyposis?. The Laryngoscope 2014; 124 (08) 1735-1736
- 85 Stewart RA. et al. Montelukast as an adjunct to oral and inhaled steroid therapy in chronic nasal polyposis. Otolaryngology – head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery 2008; 139 (05) 682-687
- 86 Rondón C. et al. Clinical Management and Use of Health Care Resources in the Treatment of Nasal Polyposis in Spanish Allergy Centers: The POLAR Study. Journal of investigational allergology & clinical immunology 2015; 25 (04) 276-282
- 87 Wei CC, Adappa ND, Cohen NA. Use of topical nasal therapies in the management of chronic rhinosinusitis. The Laryngoscope 2013; 123 (10) 2347-2359
- 88 Head K. et al. Short-course oral steroids alone for chronic rhinosinusitis. The Cochrane database of systematic reviews 2016; 4: CD011991
- 89 Head K. et al. Short-course oral steroids as an adjunct therapy for chronic rhinosinusitis. The Cochrane database of systematic reviews 2016; 4: CD011992
- 90 Hox V. et al. Benefits and harm of systemic steroids for short- and long-term use in rhinitis and rhinosinusitis: an EAACI position paper. Clinical and translational allergy 2020; 10: 1
- 91 Klimek L. et al. Aspirin desensitization: useful treatment for chronic rhinosinusitis with nasal polyps (CRSwNP) in aspirin-exacerbated respiratory disease (AERD)?. Current allergy and asthma reports 2014; 14 (06) 441
- 92 Umbreit C. et al. Analgetikaintoleranz. Ein häufiges, interdisziplinäres Krankheitsbild. Aspirin-Intolerance-Syndrom. A common and interdisciplinary disease. Der Internist 2010; 51 (09) 1196
- 93 Weber R. et al. ASS-Toleranzinduktion. Therapieoption bei Patienten mit analgetikainduzierter Erkrankung der Atemwege. Aspirin desensitization. Therapy options in patients with aspirin-exacerbated respiratory disease/CME-FRagebogen. Questionnaire. Hno 2012; 60 (04) 369-383
- 94 Comert S. et al. Aspirin 300 mg/day is effective for treating aspirin-exacerbated respiratory disease. Allergy 2013; 68 (11) 1443-1451
- 95 Fruth K. et al. Low-dose aspirin desensitization in individuals with aspirin-exacerbated respiratory disease. Allergy 2013; 68 (05) 659-665
- 96 Rozsasi A. et al. Long-term treatment with aspirin desensitization: a prospective clinical trial comparing 100 and 300 mg aspirin daily. Allergy 2008; 63 (09) 1228-1234
- 97 Havel M. et al. Sinonasal outcome under aspirin desensitization following functional endoscopic sinus surgery in patients with aspirin triad. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology – Head and Neck Surgery 2013; 270 (02) 571-578
- 98 Lee JY, Simon RA, Stevenson DD. Selection of aspirin dosages for aspirin desensitization treatment in patients with aspirin-exacerbated respiratory disease. The Journal of allergy and clinical immunology 2007; 119 (01) 157-164
- 99 Rizk H. Role of aspirin desensitization in the management of chronic rhinosinusitis. Current opinion in otolaryngology & head and neck surgery 2011; 19 (03) 210-217
- 100 Renjiao L, Fengming L. The safety and efficacy of aspirin desensitization combined with long-term aspirin therapy in Aspirin-exacerbated respiratory disease. J Investig Allergol Clin Immunol 2019; . Online ahead of print.
- 101 Sanofi. Controlled Clinical Study of Dupilumab in Patients With Bilateral Nasal Polyps (SINUS-24). Sanofi; 2019 https://clinicaltrials.gov/ct2/show/NCT02912468
- 102 Sanofi. Controlled Clinical Study of Dupilumab in Patients With Nasal Polyps (SINUS-52). Sanofi; 2019 https://clinicaltrials.gov/ct2/show/study/NCT02898454
- 103 GlaxoSmithKline. Mepolizumab in Nasal Polyposis. 2018 https://clinicaltrials.gov/ct2/show/NCT01362244
- 104 GlaxoSmithKline. Effect of Mepolizumab in Severe Bilateral Nasal Polyps – EudraCT 2016-004255-70. 2019 https://clinicaltrials.gov/ct2/show/NCT03085797
- 105 Roche HL. A Clinical Trial of Omalizumab in Participants With Chronic Rhinosinusitus With Nasal Polyps (POLYP 2). 2019 https://clinicaltrials.gov/ct2/show/NCT03280537
- 106 Roche HL. A Clinical Trial of Omalizumab in Participants With Chronic Rhinosinusitis With Nasal Polyps (POLYP 1). 2019 https://clinicaltrials.gov/ct2/show/NCT03280550
- 107 AstraZeneca. Efficacy and Safety Study of Benralizumab for Patients With Severe Nasal Polyposis (OSTRO). AstraZeneca; 2019 https://clinicaltrials.gov/ct2/show/NCT03401229
- 108 AstraZeneca. Efficacy and Safety Study of Benralizumab in Patient With Eosinophilic Chronic Rhinosinusitis With Nasal Polyps (ORCHID). AstraZeneca; 2020 https://clinicaltrials.gov/ct2/show/NCT04157335
- 109 Presta LG. et al. Humanization of an antibody directed against IgE. Journal of immunology (Baltimore, Md.: 1950) 1993; 151 (05) 2623-2632
- 110 MacGlashan DW. et al. Down-regulation of Fc(epsilon)RI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. Journal of immunology (Baltimore, Md.: 1950) 1997; 158 (03) 1438-1445
- 111 Busse W. et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. The Journal of allergy and clinical immunology 2001; 108 (02) 184-190
- 112 Novartis_Pharma_GmbH, Xolair ® 150 mg Injektionslösung, R.L.S. GmbH – Fachinformation. Rote Liste Service GmbH Frankfurt. 2019 9.
- 113 Saini SS. et al. Efficacy and safety of omalizumab in patients with chronic idiopathic/spontaneous urticaria who remain symptomatic on H1 antihistamines: a randomized, placebo-controlled study. The Journal of investigative dermatology 2015; 135 (01) 67-75
- 114 Gevaert P. et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. The Journal of allergy and clinical immunology 2013; 131 (01) 110-116.e1
- 115 Long A. et al Incidence of malignancy in patients with moderate-to-severe asthma treated with or without omalizumab. The Journal of allergy and clinical immunology 2014; 134 (03) 560-567.e4
- 116 Forster-Ruhrmann U. et al Omalizumab in patients with NSAIDs-exacerbated respiratory disease. Rhinology 2020; 58 (03) 226-232 . doi:10.4193/Rhin19.318
- 117 Bachert C. et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet (London, England) 2019; 394: 1638-1650
- 118 Bachert C. et al. Effect of Subcutaneous Dupilumab on Nasal Polyp Burden in Patients With Chronic Sinusitis and Nasal Polyposis: A Randomized Clinical Trial. Jama 2016; 315 (05) 469-479
- 119 GlaxoSmithKline_GmbH_&_Co._KG, Nucala 100 mg Injektionslösung in einer Fertigspritze, R.L.S. GmbH – Fachinformation. Rote Liste Service GmbH Frankfurt. 2019 6.
- 120 Bachert C. et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: Randomized trial. The Journal of allergy and clinical immunology 2017; 140 (04) 1024-1031.e14
- 121 AstraZeneca_GmbH, Fasenra ® 30 mg Injektionslösung in einer Fertigspritze, R.L.S. GmbH- Fachinformation. Rote Liste Service GmbH Frankfurt. 2019 7.
- 122 University JH. Benralizumab Effect on Severe Chronic Rhinosinusitis With Eosinophilic Polyposis. 2019 https://clinicaltrials.gov/ct2/show/NCT03450083
- 123 Center HC.a.R. NAsal Polyps: Inflammatory & Molecular Phenotyping of Responders to Benralizumab (NAPPREB). 2019 [09.01.2020]
- 124 Gevaert P. et al. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. The Journal of allergy and clinical immunology 2006; 118 (05) 1133-1141
- 125 Teva_BV. Cinqaero 10mg/ml, R.L.S. GmbH – Fachinformation. Rote Liste Service GmbH Frankfurt; 2018
- 126 Teva. Reslizumab in Nasal Polyposis. 2016 https://clinicaltrials.gov/ct2/show/NCT02799446
- 127 Bachert C. et al Dupilumab improves health-related quality of life in patients with chronic rhinosinusitis with nasal polyposis. Allergy 2020; 75 (01) 148-157 . doi: 10.1111/all.13984. Epub 2019 Oct 23.
- 128 Liu T. et al. Role of thymic stromal lymphopoietin in the pathogenesis of nasal polyposis. Am J Med Sci 2011; 341 (01) 40-47
- 129 Kimura S. et al. Increased expression and role of thymic stromal lymphopoietin in nasal polyposis. Allergy Asthma Immunol Res 2011; 3 (03) 186-193
- 130 Nagarkar DR. et al. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol 2013; 132 (03) 593-600.e12
- 131 Gauvreau GM. et al. OX40L blockade and allergen-induced airway responses in subjects with mild asthma. Clin Exp Allergy 2014; 44 (01) 29-37
- 132 Gauvreau GM. et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med 2014; 370 (22) 2102-2110
- 133 Kiwamoto T. et al. Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacology & therapeutics 2012; 135 (03) 327-336
- 134 Nutku E. et al. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 2003; 101 (12) 5014-5020
- 135 Akinlade B. et al. Conjunctivitis in dupilumab clinical trials. Br J Dermatol 2019; 181 (03) 459-473
- 136 Nahum Y. et al Dupilumab-induced ocular surface disease (DIOSD) in patients with atopic dermatitis: clinical presentation, risk factors for development and outcomes of treatment with tacrolimus ointment. Br J Ophthalmol 2020; 104 (06) 776-779 . doi: 10.1136/bjophthalmol-2019-315010. Epub 2019 Sep 25.
- 137 Klimek L. et al. Immunology of chronic rhinosinusitis with nasal polyps as a basis for treatment with biologicals. HNO 2019; 67 (01) 15-26
- 138 De Greve G. et al. Endotype-driven treatment in chronic upper airway diseases. Clin Transl Allergy 2017; 7: 22
- 139 Bachert C, Gevaert P, Hellings P. Biotherapeutics in Chronic Rhinosinusitis with and without Nasal Polyps. The journal of allergy and clinical immunology. In practice 2017; 5 (06) 1512-1516
- 140 Kim DW, Cho SH. Emerging Endotypes of Chronic Rhinosinusitis and Its Application to Precision Medicine. Allergy, asthma & immunology research 2017; 9 (04) 299-306
- 141 Fokkens WJ. et al. EUFOREA consensus on biologics for CRSwNP with or without asthma. Allergy 2019; 74 (12) 2312-2319
- 142 Kim SH. et al. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 2005; 22 (01) 131-142
- 143 Klimek L. et al. Visual analogue scales (VAS): Measuring instruments for the documentation of symptoms and therapy monitoring in cases of allergic rhinitis in everyday health care: Position Paper of the German Society of Allergology (AeDA) and the German Society of Allergy and Clinical Immunology (DGAKI), ENT Section, in collaboration with the working group on Clinical Immunology, Allergology and Environmental Medicine of the German Society of Otorhinolaryngology, Head and Neck Surgery (DGHNOKHC). Allergo J Int 2017; 26 (01) 16-24