Osteologie 2021; 30(01): 21-25
DOI: 10.1055/a-1206-6735
Originalarbeit

Klinische Aspekte des subchondralen Knochens bei der Arthrose

Clinical aspects of the subchondral bone in osteoarthritis
Lukas Holzer
1   Abteilung für Orthopädie und Traumatologie, AUVA-Unfallkrankenhaus Klagenfurt am Wörthersee, Klagenfurt am Wörthersee, Österreich
› Institutsangaben

Zusammenfassung

Wissenschaftliche Erkenntnisse der letzten Jahrzehnte lassen vermuten, dass Veränderungen im Bereich des subchondralen Knochens in der Genese und Progression der Arthrose mitverantwortlich sind. Vordergründig scheinen hierfür mechanische Faktoren wie Achsfehlstellung und Instabilität verantwortlich. Die Veränderungen im subchondralen Knochen sind biphasisch. Primär kommt es durch ein erhöhtes Remodeling zu einer Reduktion des Knochenvolumens im Bereich des subchondralen Knochen, sekundär zu einer Dichtezunahme und Abnahme der Gewebsmineralisation. Die veränderten strukturellen Gegebenheiten des Knochens begünstigen die Progression der Knorpeldegeneration. Medikamente, die das Bone Remodeling beeinflussen, werden daher auch als potenzielle Behandlungsoptionen für die Arthrose betrachtet.

Abstract

Scientific data of the last decades show that subchondral bone changes are involved in the initiation and progression of osteoarthritis. Mechanical factors such as mal-alignment and instability seem to be primarily responsible. Initially remodeling of the subchondral bone is increased and bone volume decreased, whereas in a secondary stage bone density is increased and the degree of tissue mineralization is decreased. These structural changes of the bone lead to a further progession of cartilage degradation. Drugs that affect bone remodeling are therefore seen as potential treatment options of osteoarthritis.



Publikationsverlauf

Artikel online veröffentlicht:
03. Februar 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Glyn-Jones S, Palmer AJ, Agricola R. et al. Osteoarthritis. Lancet 2015; 386: 376-387
  • 2 Learmonth ID, Young C, Rorabeck C. The operation of the century: Total hip replacement. Lancet 2007; 370: 1508-1519
  • 3 Martel-Pelletier J, Barr AJ, Cicuttini FM. et al. Osteoarthritis. Nat Rev Dis Primers 2016 Oct 13; 2. 16072.
  • 4 Hunter DJ, Gerstenfeld L, Bishop G. et al. Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized. Arthritis Res Ther 2009; 11: R11
  • 5 Alliston T, Alliston T, Hernandez CJ. et al. Bone marrow lesions in osteoarthritis: What lies beneath. J Orthop Res 2018; 36: 1818-1825
  • 6 Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum Dis 1957; 16: 494-501
  • 7 Imhof H, Sulzbacher I, Grampp S. et al. Subchondral bone and cartilage disease: A rediscovered functional unit. Invest Radiol 2000; 35: 581-588
  • 8 Poulet B, de Souza R, Kent AV. et al. Intermittent applied mechanical loading induces subchondral bone thickening that may be intensified locally by contiguous articular cartilage lesions. Osteoarthritis Cartilage 2015; 23: 940-948
  • 9 Bonde HV, Talman ML, Kofoed H. The area of the tidemark in osteoarthritis a three-dimensional stereological study in 21 patients. APMIS 2005; 113: 349-352
  • 10 Li B, Marshall D, Roe M. et al. The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis. J Anat 1999; 195: 101-110
  • 11 Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol 2012; 8: 665-673
  • 12 Iijima H, Aoyama T, Ito A. et al. Destabilization of the medial meniscus leads to subchondral bone defects and site-specific cartilage degeneration in an experimental rat model. Osteoarthritis Cartilage 2014; 22: 1036-1043
  • 13 Maerz T, Kurdziel M, Newton MD. et al. Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2016; 24: 698-708
  • 14 Holzer LA, Kraiger M, Talakic E. et al. Microstructural analysis of subchondral bone in knee osteoarthritis. Osteoporos Int 2020; 31: 2037-2045
  • 15 Klose-Jensen R, Hartlev LB, Boel LWT. et al. Subchondral bone turnover, but not bone volume, is increased in early stage osteoarthritic lesions in the human hip joint. Osteoarthritis Cartilage 2015; 23: 2167-2173
  • 16 Chen Y, Wang T, Guan M. et al. Bone turnover and articular cartilage differences localized to subchondral cysts in knees with advanced osteoarthritis. Osteoarthritis Cartilage 2015; 23: 2174-2183
  • 17 Cox LG, van Donkelaar CC, van Rietbergen B. et al. Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis. Bone 2012; 50: 1152-1161
  • 18 Link TM, Steinbach LS, Ghosh S. et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiol 2003; 226: 373-381
  • 19 Wluka AE, Hanna F, Davies-Tuck M. et al. Bone marrow lesions predict increase in knee cartilage defects and loss of cartilage volume in middle-aged women without knee pain over 2 years. Ann Rheum Dis 2009; 68: 850-855
  • 20 Bergman AG, Willen HK, Lindstrand AL. et al. Osteoarthritis of the knee: Correlation of subchondral MR signal abnormalities with histopathologic and radiographic features. Skeletal Radiol 1994; 23: 445-448
  • 21 Lems WF. Bisphosphonates: A therapeutic option for knee osteoarthritis?. Ann Rheum Dis 2018; 77: 1247-1248
  • 22 Vaysbrot EE, Osani MC, Musetti MC. et al. Are bisphosphonates efficacious in knee osteoarthritis? A meta-analysis of randomized controlled trials. Osteoarthritis Cartilage 2018; 26: 154-164
  • 23 Nishii T, Tamura S, Shiomi T. et al. Alendronate treatment for hip osteoarthritis: Prospective randomized 2-year trial. Clin Rheumatol. 2013; Dec;. 32 (12) : 1759-1766.
  • 24 Spector TD, Conaghan PG, Buckland-Wright JC. et al. Effect of risedronate on joint structure and symptoms of knee osteoarthritis: Results of the BRISK randomized, controlled trial [ISRCTN01928173]. Arthritis Res Ther 2005; 7 (03) : R625-R633
  • 25 Neogi T, Li S, Peloquin C. et al. Effect of bisphosphonates on knee replacement surgery. Ann Rheum Dis 2018; 77: 92-97
  • 26 Cai G, Aitken D, Laslett L. et al. A multicentre randomised controlled trial of zoledronic acid for osteoarthritis of the knee with bone marrow lesions. Ann Rheum Dis 2018; 77: 57-58
  • 27 Henrotin Y, Labasse A, Zheng SX. et al. Strontium ranelate increases cartilage matrix formation. J Bone Miner Res 2001; 16: 299-308
  • 28 Reginster JY, Badurski J, Bellamy N. et al. Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: Results of a double-blind, randomised placebo-controlled trial. Ann Rheum Dis 2013; 72: 179-186
  • 29 Pelletier JP, Roubille C, Raynauld JP. et al. Disease-modifying effect of strontium ranelate in a subset of patients from the Phase III knee osteoarthritis study SEKOIA using quantitative MRI: Reduction in bone marrow lesions protects against cartilage loss. Ann Rheum Dis 2015; 74: 422-429
  • 30 Svelander L, Erlandsson-Harris H, Astner L. et al. Inhibition of cathepsin K reduces bone erosion, cartilage degradation and inflammation evoked by collagen-induced arthritis in mice. Eur J Pharmacol 2009; 613: 155-162
  • 31 Lindström E, Rizoska B, Tunblad K. et al. The selective cathepsin K inhibitor MIV-711 attenuates joint pathology in experimental animal models of osteoarthritis. J Transl Med 2018; 16: 56
  • 32 Manicourt D, Beaulieu A, Garnero P. et al. Effect of treatment with the cathepsin-K inhibitor, balicatib, on cartilage volume and biochemical markers of bone and cartilage degradation in patients with painful knee osteoarthritis. Osteoarthritis Cartilage 2007; 15: C130
  • 33 Granholm S, Lundberg P, Lerner UH. Expression of the calcitonin receptor, calcitonin receptor-like receptor, and receptor activity modifying proteins during osteoclast differentiation. J Cell Biochem 2008; 104: 920-933
  • 34 Nielsen RH, Bay-Jensen AC, Byrjalsen I. et al. Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover. Osteoarthritis Cartilage 2011; 19: 466-473
  • 35 Karsdal MA, Byrjalsen I, Alexandersen P. et al. CSMC021C2301/2 investigators. Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover. Osteoarthritis Cartilage 2015; 23: 532-543
  • 36 Sampson ER, Hilton MJ, Tian Y. et al. Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med 2011; 3: 101ra93
  • 37 Bellido M, Lugo L, Roman-Blas JA. et al. Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthritis Cartilage 2011; 19: 1228-1236
  • 38 Kovács B, Vajda E, Nagy EE. Regulatory Effects and Interactions of the Wnt and OPG-RANKL-RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. Int J Mol Sci 2019; 20: 4653
  • 39 Gao XR, Chen YS, Deng W. The effect of vitamin D supplementation on knee osteoarthritis: A meta-analysis of randomized controlled trials. Int J Surg 2017; 46: 14-20