Rofo 2020; 192(12): 1154-1173
DOI: 10.1055/a-1207-1006
Review

White Matter Lesions in Adults – a Differential Diagnostic Approach

Article in several languages: English | deutsch
Stefan Weidauer
1   Neurology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
,
Marlies Wagner
2   Institute for Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
,
Elke Hattingen
2   Institute for Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
› Author Affiliations

Abstract

Objective Cerebral white matter lesions on MRI in adults are a common finding. On the one hand, they may correspond to a clinically incidental feature, be physiologically or age-associated, or on the other hand they may be the overture to a severe neurological disease. With regard to pathophysiological aspects, practical hints for the differential diagnostic interpretation of lesions in daily clinical practice are presented.

Material and Methods With special regard to the vascular architecture and supply of the cerebral white matter, physiological structures are schematically represented and pathophysiological processes are highlighted by comparative image analysis of equally angulated MR sequences.

Results The most frequent vascular, inflammatory, metabolic, and neoplastic disease entities are presented on the basis of characteristic imaging findings and corresponding clinical- neurological constellations. The details of signal intensities and localization essential for differential diagnosis are highlighted.

Conclusion By means of comparative image analysis and the recognition of characteristic lesion patterns, taking into account anatomical principles and pathophysiological processes, the differential diagnostic classification of cerebral white matter lesions and associated diseases can be significantly facilitated. The additional consideration of clinical and laboratory findings is essential.

Key Points:

  • Cerebral white matter lesions can be a harmless secondary finding or overture to a severe neurological disease.

  • The comparative image analysis of different sequences with identical angulation is crucial.

  • With special regard to the vascular anatomy, different lesion patterns can be identified.

  • The consideration of neurological and laboratory chemical constellations is essential for the differential diagnosis.

Citation Format

  • Weidauer S, Wagner M, Hattingen E. White Matter Lesions in Adults – a Differential Diagnostic Approach. Fortschr Röntgenstr 2020; 192: 1154 – 1173



Publication History

Received: 14 April 2020

Accepted: 17 June 2020

Article published online:
20 July 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Nichtweiß M, Weidauer S, Treusch N. et al. White Matter Lesions and Vascular Cognitive Impairment. Part 1: Typical and Unusual Causes. Clin Neuroradiol 2012; 22: 193-210
  • 2 Weidauer S, Nichtweiß M, Hattingen E. Differential diagnosis of white matter lesions: non vascular causes – part II. Clin Neuroradiol 2014; 24: 93-110
  • 3 Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9: 689-701
  • 4 Pantoni L, Basile AM, Pracucci G. et al. Impact of age-related cerebral white matter changes on the transition to disability – the LADIS study: rationale, design and methodology. Neuroepidemiology 2005; 24: 51-62
  • 5 Barkhof F, Scheltens P. Imaging of white matter lesions. Cerebrovasc Dis 2002; 13 (Suppl. 02) S21-S23
  • 6 Schmahmann JD, Smith EE, Eichler FS. et al. Cerebral white matter neuroanatomy, clinical neurology and neurobehavioral correlates. Ann NY Acad Sci 2008; 1142: 266-309
  • 7 Jäger HR, Gomez-Anson B. Small Vessel Disease – Imaging and Clinical Aspects. In: Barkhof F, Jäger R, Thurnher M. et al. eds Clinical Neuroradiology. Berlin Heidelberg: Springer; 2019: 167-201
  • 8 Kwee RM, Kwee TC. Virchow-Robin Spaces at MR Imaging. RadioGraphics 2007; 27: 1071-1086
  • 9 Rudie JD, Rauschecker AM, Nabavizadeh SA. et al. Neuroimaging of Dilated Perivascular Spaces: From Benign and Pathologic Causes to Mimics. J Neuroimaging 2018; 28: 139-149
  • 10 Salamon G, Corbaz JM. Atlas de la vascularisation arterielle du cerveau chez l’homme. Paris: Sandoz ; 1971
  • 11 Eckstein C, Saidha S, Levy M. A differential diagnosis of central nervous system demyelination: beyond multiple sclerosis. J Neurol 2012; 259: 801-816
  • 12 Wattjes MP, Steenwijk MD, Stangel M. MRI in the diagnosis and monitoring of multiple sclerosis: an update. Clin Neuroradiol 2015; 25 (Suppl. 02) S157-S165
  • 13 van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134: 351-382
  • 14 Weller RO, Hawkes CA, Kalaria RN. et al. White Matter Changes in Dementia: Role of Impaired Drainage of Interstitial Fluid. Brain Pathology 2015; 25: 63-78
  • 15 Rasalkar DD, Chu WC, Hui J. et al. Pictorial review of mucopolysaccharidosis with emphasis on MRI features of brain and spine. Br J Radiol 2011; 84: 469-477
  • 16 Prodan CI, Holland NR, Wisdom PJ. et al. CNS demyelination associated with copper deficiency and hyperzincemia. Neurology 2002; 59: 1453-1456
  • 17 Singh TD, Fugate JE, Rabinstein AA. Central pontine and extrapontine myelinolysis: a systematic review. Eur J Neurol 2014; 21: 1443-1450
  • 18 Blasel S, Hattingen E, Adelmann M. et al. Toxic leukoencephalopathy after heroin abuse without heroin vapour inhalation: MR imaging and clinical features in 3 patients. Clin Neuroradiol 2010; 20: 48-53
  • 19 Geibprasert S, Gallucci M, Krings T. Addictive illegal drugs: structural neuroimaging. AJNR Am J Neuroradiol 2010; 31: 803-808
  • 20 Gürtler S, Ebner A, Tuxhorn I. et al. Transient lesion in the splenium of the corpus callosum and antiepileptic drug withdrawal. Neurology 2005; 65: 1032-1036
  • 21 Bartynski WS. Posterior Reversible Encephalopathy Syndrome, Part 1: Fundamental Imaging and Clinical Features. AJNR Am J Neuroradiol 2008; 29: 1036-1042
  • 22 Schiffmann R, van der Knaap MS. An MRI-based approach to the diagnosis of white matter disorders. Neurology 2009; 72: 750-759
  • 23 Barkhof F, Fox NC, Bastos-Leite AJ. et al. Neuroimaging in dementia. Berlin Heidelberg: Springer; 2011
  • 24 Mascalchi M, Filippi M, Floris R. et al. Diffusion-weighted MR of the brain: methodology and clinical application. Radiol Med 2005; 109: 155-197
  • 25 Mori S, van Zijl PC. Fiber tracking: principles and strategies – a technical review. NMR Biomed 2002; 15: 468-480
  • 26 Bink A, Schmitt M, Gaa J. et al. Detection of lesions in multiple sclerosis by 2D FLAIR and single-slab 3D FLAIR sequences at 3.0 T – preliminary results. Eur Radiol 2006; 16: 1104-1110
  • 27 Tatu L, Moulin T, Bogousslavsky J. et al. Arterial territories of the human brain: Cerebral hemispheres. Neurology 1998; 50: 1699-1708
  • 28 Marinkovic S, Gibo H, Milisavljevic M. et al. Anatomic and clinical correlations of the lenticulostriate arteries. Clin Anat 2001; 14: 190-195
  • 29 Yasargil MG. Microneurosurgery, Volume I: Microsurgical anatomy of the basal cisterns and vessels of the brain, diagnostic studies, general operative techniques and pathological considerations of intracranial aneurysms. 1. Aufl. Stuttgart: Thieme; 1984
  • 30 Zhang ET, Inman CBE, Weller RO. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 1990; 170: 111-123
  • 31 Weller RO, Subash M, Preston SD. et al. Perivascular Drainage of Amyloid-b Peptides from the Brain and Its Failure in Cerebral Amyloid Angiopathy and Alzheimer’s Disease. Brain Pathology 2008; 18: 253-266
  • 32 Ding J, Sigurðsson S, Jónsson PV. et al. Large Perivascular Spaces Visible on Magnetic Resonance Imaging, Cerebral Small Vessel Disease Progression, and Risk of Dementia. The Age, Gene/Environment Susceptibility – Reykjavik Study. JAMA Neurol 2017; 74: 1105-1112
  • 33 Hachinski V, Iadecola C, Petersen RC. et al. National Institute of Neurological Disorders and Stroke – Canadian Stroke Network Vascular Cognitive Impairment Harmonization Standards. Stroke 2006; 37: 2220-2241
  • 34 Román GC, Erkinjuntti T, Wallin A. et al. Subcortical ischaemic vascular dementia. Lancet Neurol 2002; 1: 426-436
  • 35 Román GC, Tatemichi TK, Erkinjuntti T. et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993; 43: 250-260
  • 36 Wardlaw JM, Smith EE, Biessels GJ. et al. STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12: 822-838
  • 37 Zhu YC, Tzourio C, Soumaré A. et al. Severity of Dilated Virchow-Robin Spaces Is Associated With Age, Blood Pressure, and MRI Markers of Small Vessel Disease: A Population-Based Study. Stroke 2010; 41: 2483-2490
  • 38 Zhu YC, Dufouil C, Soumaré A. et al. High degree of dilated Virchow-Robin spaces on MRI is associated with increased risk of dementia. J Alzheimers Dis 2010; 22: 663-672
  • 39 Weidauer S, Wagner M, Enkirch SJ. et al. CNS Infections in Immunoincompetent Patients: Neuroradiological and Clinical Features. Clin Neuroradiol 2020; 30: 9-25
  • 40 Duering M, Csanadi E, Gesierich B. et al. Incident lacunes preferentially localize to the edge of white matter hyperintensities: insights into the pathophysiology of cerebral small vessel disease. Brain 2013; 136: 2717-2726
  • 41 Wahlund LO, Barkhof F, Fazekas F. et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 2001; 32: 1318-1322
  • 42 van Straaten EC, Fazekas F, Rostrup E. et al. Impact of white matter hyperintensities scoring method on correlations with clinical data: the LADIS study. Stroke 2006; 37: 836-840
  • 43 Frisoni GB, Galluzzi S, Pantoni L. et al. The effect of white matter lesions on cognition in the elderly – small but detectable. Nat Clin Pract Neurol 2007; 3: 620-627
  • 44 Wen W, Sachdev PS. Extent and distribution of white matter hyperintensities in stroke patients: the Sydney stroke study. Stroke 2004; 35: 2813-2819
  • 45 Kruit MC, van Buchem MA, Hofman PA. et al. Migraine as a risk factor for subclinical brain lesions. JAMA 2004; 291: 427-434
  • 46 Charidimou A, Boulouis G, Pasi M. et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 2017; 88: 1157-1164
  • 47 Greenberg SM, Charidimou A. Diagnosis of cerebral amyloid angiopathy: evolution of the Boston criteria. Stroke 2018; 49: 491-497
  • 48 Haller S, Vernooij MW, Kuijer JPA. et al. Cerebral microbleeds: imaging and clinical significance. Radiology 2018; 287: 11-28
  • 49 Chabriat H, Joutel A, Dichgans M. et al. CADASIL. Lancet Neurol 2009; 8: 643-653
  • 50 Lerman-Sagie T, Leshinsky-Silver E, Watemberg N. et al. White matter involvement in mitochondrial diseases. Mol Genet Metab 2005; 84: 127-136
  • 51 Moore DF, Kaneski CR, Askari H. et al. The cerebral vasculopathy of Fabry disease. J Neurol Sci 2007; 257: 258-263
  • 52 Berlit P. Diagnosis and treatment of cerebral vasculitis. Ther Adv Neurol Disord 2010; 3: 29-42
  • 53 Jennette JC, Falk RJ, Bacon PA. et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 2013; 65: 1-11
  • 54 Scolding NJ. Central nervous system vasculitis. Semin Immunopathol 2009; 31: 527-536
  • 55 Pollock H, Hutchings M, Weller RO. et al. Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. J Anat 1997; 191: 337-346
  • 56 Brownlee W, Hardy TA, Fazekas F. et al. Diagnosis of multiple sclerosis: progress and challenges. Lancet 2017; 389: 1336-1346
  • 57 Thompson AJ, Banwell BL, Barkhof F. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17: 162-173
  • 58 Traboulsee A, Simon JH, Stone L. et al. Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. AJNR Am J Neuroradiol 2016; 37: 394-401
  • 59 Wingerchuk DM, Banwell B, Bennett JL. et al. International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85: 177-189
  • 60 Hu W, Lucchinetti CF. The pathological spectrum of CNS inflammatory demyelinating diseases. Semin Immunopathol 2009; 31: 439-453
  • 61 Charidimou A, Linn J, Vernooij MW. et al. Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions. Brain 2015; 138: 2126-2139
  • 62 Roher AE, Kuo YM, Esh C. et al. Cortical and Leptomeningeal Cerebrovascular Amyloid and White Matter Pathology in Alzheimer’s Disease. Molecular Med 2003; 9: 112-122
  • 63 Salvarani C, Hunder GG, Morris JM. et al. Aβ-related angiitis: comparison with CAA without inflammation and primary CNS vasculitis. Neurology 2013; 81: 1596-1603
  • 64 Duman IE, Coenen VA, Doostkam S. et al. Teaching Neuroimages: Inflammatory CAA. Clin Neuroradiol 2019; 29: 379-382
  • 65 Barkhof F, Daams M, Scheltens P. et al. An MRI rating scale for amyloid-related imaging abnormalities with edema or effusion. AJNR Am J Neuroradiol 2013; 34: 1550-1555
  • 66 Bot JC, Mazzai L, Hagenbeek RE. et al. Brain miliary enhancement. Neuroradiology 2020; 62: 283-300
  • 67 Christoforidis GA, Spickler EM, Recio MV. et al. MR of CNS sarcoidosis: correlation of imaging features to clinical symptoms and response to treatment. AJNR Am J Neuroradiol 1999; 20: 655-669
  • 68 Miller DH, Weinshenker BG, Filippi M. et al. Differential diagnosis of suspected multiple sclerosis: a consensus approach. Mult Scler 2008; 14: 1157-1174
  • 69 Küker W, Gaertner S, Nagele T. et al. Vessel wall contrast enhancement: a diagnostic sign of cerebral vasculitis. Cerebrovasc Dis 2008; 26: 23-29
  • 70 Haldorson IS, Espeland A, Larsson EM. Central Nervous System Lymphoma: Characteristic Findings on Traditional and Advanced Imaging. AJNR Am J Neuroradiol 2011; 32: 984-992
  • 71 Weidauer S, Wagner M, Nichtweiß M. Magnetic Resonance Imaging and Clinical Features in Acute and Subacute Myelopathies. Clin Neuroradiol 2017; 27: 417-433
  • 72 Kidd D, Barkhof F, McConnell R. et al. Cortical lesions in multiple sclerosis. Brain 1999; 122: 17-26
  • 73 Susac JO, Murtagh FR, Egan RA. et al. MRI findings in Susac’s syndrome. Neurology 2003; 61: 1783-1787
  • 74 Young NP, Weinshenker BG, Lucchinetti CF. Acute disseminated encephalomyelitis: current understanding and controversies. Semin Neurol 2008; 28: 84-94
  • 75 Seewann A, Enzinger C, Filippi M. et al. MRI characteristics of atypical idiopathic inflammatory demyelinating lesions of the brain: A review of reported findings. J Neurol 2008; 255: 1-10
  • 76 Mahad DJ, Staugaitis S, Ruggieri P. et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis and primary CNS demyelination. J Neurol Sci 2005; 228: 3-5
  • 77 Akman-Demir G, Serdaroglu P, Tasçi B. The Neuro-Behçet Study Group. Clinical patterns of neurological involvement in Behçet’s disease: evaluation of 200 patients. Brain 1999; 122: 2171-2181
  • 78 Keegan BM, Giannini C, Parisi JE. et al. Sporadic adult-onset leukoencephalopathy with neuroaxonal spheroids mimicking cerebral MS. Neurology 2008; 70: 1128-1133
  • 79 Chang L, Shukla DK. Imaging studies of the HIV-infected brain. Handb Clin Neurol 2018; 152: 229-264
  • 80 Gheuens S, Wüthrich C, Koralnik IJ. Progressive multifocal leukoencephalopathy: why grey and white matter. Ann Rev Path 2013; 8: 189-215
  • 81 Moll NM, Rietsch AM, Ransohoff AJ. et al. Cortical demyelination in PML and MS – Similarities and differences. Neurology 2008; 70: 336-343
  • 82 Tan CS, Koralnik IJ. Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol 2010; 9: 425-437
  • 83 Yousry TA, Pelletier D, Cadavid D. et al. Magnetic Resonance Imaging Pattern in Natalizumab-Associated Progressive Multifocal Leukoencephalopathy. Ann Neurol 2012; 72: 779-787
  • 84 Hodel J, Darchis C, Outteryck O. et al. Punctate pattern – A promising imaging marker for the diagnosis of natalizumab-associated PML. Neurology 2016; 86: 1516-1523
  • 85 Lulé D, Ludolph AC, Kassubek J. MRI-based functional neuroimaging in ALS: an update. Amyotroph Lateral Scler 2009; 10: 258-268
  • 86 Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol 2018; 14: 544-558