Aktuelle Rheumatologie 2020; 45(04): 328-333
DOI: 10.1055/a-1210-2259
Übersichtsarbeit

Neue Erkenntnisse zur Pathogenese des SLE und ihre Auswirkungen auf die Entwicklung neuer Therapie-Konzepte

New Insights into the Pathogenesis of SLE and their Implications for the Development of New Therapeutic Concepts
Falk Hiepe
Medizinische Klinik mit Schwerpunkt Rheumatologie und klin. Immunologie, Charité – Universitätsmedizin Berlin; Deutsches Rheumaforschungszentrum – ein Institut der Leibniz-Gemeinschaft, Berlin
› Institutsangaben

Zusammenfassung

Autoantikörper sind essentiell in der Pathogenese des SLE. Sie sind das Ergebnis einer Störung des erworbenen (adaptiven) Immunsystems mit fehlender Toleranz gegen Selbst. Eine Typ-I Interferon-Signatur, die im angeborenen (innaten) Immunsystem ihren Ursprung hat, ist ein wesentlicher Treiber dieser Störung. Autoantikörper können sowohl von kurzlebigen, proliferierenden Plasmablasten, die B-Zell-Hyperaktivität widerspiegeln, als auch von langlebigen, nicht-proliferierenden Gedächtnis-Plasmazellen sezerniert werden. Gedächtnis-Plasmazellen, die in Nischen im Knochenmark und im entzündeten Gewebe lokalisiert sind, lassen sich nicht durch konventionelle Immunsuppressiva und Therapien mit B-Zellen als Target eliminieren. Konzepte, die auf die Depletion von Gedächtnis-Plasmazellen abzielen, können im Zusammenspiel mit Targets, die eine Aktivierung von autoreaktiven B-Zellen verhindern, ein kuratives Potenzial haben.

Abstract

Autoantibodies are essential in the pathogenesis of SLE. They are the result of a disorder of the acquired (adaptive) immune system with lack of tolerance to self. A type I interferon signature, which originates in the innate immune system, is a major driver of this disorder. Autoantibodies can be secreted by both short-lived, proliferating plasmablasts reflecting B-cell hyperactivity and by long-lived, non-proliferating memory plasma cells. Memory plasma cells located in niches in bone marrow and inflamed tissue cannot be eliminated by conventional immunosuppressants and therapies with B cells as a target. Concepts aiming at the depletion of memory plasma cells may have curative potential in interaction with targets that prevent the activation of autoreactive B cells.



Publikationsverlauf

Artikel online veröffentlicht:
06. August 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Sherer Y, Gorstein A, Fritzler MJ. et al. Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Seminars in arthritis and rheumatism 2004; 34: 501-537
  • 2 Alexander T, Thiel A, Rosen O. et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 2009; 113: 214-223
  • 3 Manz RA, Thiel A, Radbruch A. Lifetime of plasma cells in the bone marrow. Nature 1997; 388: 133-134 doi: 10.1038/40540
  • 4 Hoyer BF, Moser K, Hauser AE. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J Exp Med 2004; 199: 1577-1584
  • 5 Cheng Q, Mumtaz IM, Khodadadi L. et al. Autoantibodies from long-lived 'memory' plasma cells of NZB/W mice drive immune complex nephritis. Ann Rheum Dis 2013; 72: 2011-2017
  • 6 Radbruch A, Muehlinghaus G, Luger EO. et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 2006; 6: 741-750
  • 7 Manz RA, Hauser AE, Hiepe F. et al. Maintenance of serum antibody levels. Annu Rev Immunol 2005; 23: 367-386
  • 8 Amanna IJ, Carlson NE, Slifka MK. Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med 2007; 357: 1903-1915 doi: 10.1056/NEJMoa066092
  • 9 Hiepe F, Radbruch A. Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat Rev Nephrol 2016; 12: 232-240 doi: 10.1038/nrneph.2016.20
  • 10 Mumtaz IM, Hoyer BF, Panne D. et al. Bone marrow of NZB/W mice is the major site for plasma cells resistant to dexamethasone and cyclophosphamide: implications for the treatment of autoimmunity. J Autoimmun 2012; 39: 180-188
  • 11 Starke C, Frey S, Wellmann U. et al. High frequency of autoantibody-secreting cells and long-lived plasma cells within inflamed kidneys of NZB/W F1 lupus mice. Eur J Immunol 2011; 41: 2107-2112
  • 12 Neubert K, Meister S, Moser K. et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 2008; 14: 748-755
  • 13 Alexander T, Sarfert R, Klotsche J. et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann Rheum Dis 2015; 74: 1474-1478
  • 14 Merrill JT, Wallace DJ, Wax S. et al. Efficacy and Safety of Atacicept in Patients With Systemic Lupus Erythematosus: Results of a Twenty-Four-Week, Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Arm, Phase IIb Study. Arthritis &. rheumatology 2018; 70: 266-276
  • 15 Isenberg D, Gordon C, Licu D. et al. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann Rheum Dis 2015; 74: 2006-2015
  • 16 Männe C, Takaya A, Yamasaki Y. et al. Salmonella SiiE prevents an efficient humoral immune memory by interfering with IgG(+) plasma cell persistence in the bone marrow. Proc Natl Acad Sci U S A 2019; 116: 7425-7430
  • 17 Cheng Q, Pelz A, Taddeo A. et al. Selective depletion of plasma cells in vivo based on the specificity of their secreted antibodies. Eur J Immunol 2020; 50: 284-291
  • 18 Jacobi A, Odendahl M, Hansen A. et al. Monitoring of CD27 high/CD19+peripheral B cells reflects the disease activity in patients with systemic lupus erythematosus. Arthritis and Rheumatism 2001; 44: S296-S296
  • 19 Odendahl M, Jacobi A, Hansen A. et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 2000; 165: 5970-5979
  • 20 Stohl W, Hiepe F, Latinis KM. et al. Belimumab reduces autoantibodies, normalizes low complement, and reduces select B-cell populations in patients with systemic lupus erythematosus. Arthritis Rheum 2012; 64: 2328-2337
  • 21 Humrich JY, von Spee-Mayer C, Siegert E. et al. Low-dose interleukin-2 therapy in refractory systemic lupus erythematosus: an investigator-initiated, single-centre phase 1 and 2a clinical trial. Lancet Rheumatol 2019; 1: e44-e54
  • 22 Cheng Q, Khodadadi L, Taddeo A. et al. CXCR4-CXCL12 interaction is important for plasma cell homing and survival in NZB/W mice. Eur J Immunol 2018; 48: 1020-1029
  • 23 Alexander T, Cheng Q, Klotsche J. et al. Proteasome inhibition with bortezomib induces a therapeutically relevant depletion of plasma cells in SLE but does not target their precursors. Eur J Immunol 2018; 48: 1573-1579
  • 24 Taddeo A, Khodadadi L, Voigt C. et al. Long-lived plasma cells are early and constantly generated in New Zealand Black/New Zealand White F1 mice and their therapeutic depletion requires a combined targeting of autoreactive plasma cells and their precursors. Arthritis Res Ther 2015; 17: 39
  • 25 Khodadadi L, Cheng Q, Alexander T. et al. Bortezomib Plus Continuous B Cell Depletion Results in Sustained Plasma Cell Depletion and Amelioration of Lupus Nephritis in NZB/W F1 Mice. PLoS One 2015; 10: e0135081
  • 26 Thorlacius GE, Wahren-Herlenius M, Ronnblom L. An update on the role of type I interferons in systemic lupus erythematosus and Sjogren’s syndrome. Current opinion in rheumatology 2018; 30: 471-481 doi: 10.1097/BOR.0000000000000524
  • 27 Crow MK. Advances in understanding the role of type I interferons in systemic lupus erythematosus. Current opinion in rheumatology 2014; 26: 467-474 doi: 10.1097/BOR.0000000000000087
  • 28 Rose T, Grutzkau A, Hirseland H. et al. IFNalpha and its response proteins, IP-10 and SIGLEC-1, are biomarkers of disease activity in systemic lupus erythematosus. Ann Rheum Dis 2013; 72: 1639-1645
  • 29 Biesen R, Demir C, Barkhudarova F. et al. Sialic acid-binding Ig-like lectin I expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis and Rheumatism 2008; 58: 1136-1145
  • 30 Gardet A, Pellerin A, McCarl CA. et al. Effect of in vivo Hydroxychloroquine and ex vivo Anti-BDCA2 mAb Treatment on pDC IFNalpha Production From Patients Affected With Cutaneous Lupus Erythematosus. Frontiers in immunology 2019; 10: 275
  • 31 Sacre K, Criswell LA, McCune JM. Hydroxychloroquine is associated with impaired interferon-alpha and tumor necrosis factor-alpha production by plasmacytoid dendritic cells in systemic lupus erythematosus. Arthritis Res Ther 2012; 14: R155 doi: 10.1186/ar3895
  • 32 Ichikawa HT, Conley T, Muchamuel T. et al. Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum 2012; 64: 493-503
  • 33 Leyendeckers H, Dzionek A, Winkels G. et al. Interferon-alfa expression by plasmacytoid dendritic cells of SLE patients can be inhibited by anti-BDCA-2 antibody. Annals of the Rheumatic Diseases 2003; 62: 79-79
  • 34 Crow MK, Olferiev M, Kirou KA. Targeting of type I interferon in systemic autoimmune diseases. Transl Res 2015; 165: 296-305 doi: 10.1016/j.trsl.2014.10.005
  • 35 Furie R, Khamashta M, Merrill JT. et al. Anifrolumab, an Anti-Interferon-alpha Receptor Monoclonal Antibody, in Moderate-to-Severe Systemic Lupus Erythematosus. Arthritis & rheumatology 2017; 69: 376-386
  • 36 Furie RA, Morand EF, Bruce IN. et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): a randomised, controlled, phase 3 trial. Lancet Rheumatol 2019; 1: e208-e219
  • 37 Morand EF, Furie R, Tanaka Y. et al. Trial of Anifrolumab in Active Systemic Lupus Erythematosus. N Engl J Med 2020; 382: 211-221
  • 38 Houssiau FA, Thanou A, Mazur M. et al. IFN-alpha kinoid in systemic lupus erythematosus: results from a phase IIb, randomised, placebo-controlled study. Ann Rheum Dis 2020; 79: 347-355
  • 39 Sanchez GAM, Reinhardt A, Ramsey S. et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest 2018; 128: 3041-3052
  • 40 Wallace DJ, Furie RA, Tanaka Y. et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2018; 392: 222-231
  • 41 Aringer M, Smolen JS. Therapeutic blockade of TNF in patients with SLE-promising or crazy?. Autoimmun Rev 2012; 11: 321-325 doi: 10.1016/j.autrev.2011.05.001
  • 42 van Vollenhoven RF, Hahn BH, Tsokos GC. et al. Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet 2018; 392: 1330-1339
  • 43 Guimaraes PM, Scavuzzi BM, Stadtlober NP. et al. Cytokines in systemic lupus erythematosus: far beyond Th1/Th2 dualism lupus: cytokine profiles. Immunol Cell Biol 2017; 95: 824-831
  • 44 Sarkar MK, Hile GA, Tsoi LC. et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis 2018; 77: 1653-1664
  • 45 Sakuma Y, Nagai T, Yoshio T. et al. Differential activation mechanisms of serum C5a in lupus nephritis and neuropsychiatric systemic lupus erythematosus. Mod Rheumatol 2017; 27: 292-297
  • 46 Pickering MC, Ismajli M, Condon MB. et al. Eculizumab as rescue therapy in severe resistant lupus nephritis. Rheumatology (Oxford) 2015; 54: 2286-2288
  • 47 Kello N, Khoury LE, Marder G. et al. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: Case series and review of literature. Seminars in arthritis and rheumatism 2019; 49: 74-83