RSS-Feed abonnieren
DOI: 10.1055/a-1210-2259
Neue Erkenntnisse zur Pathogenese des SLE und ihre Auswirkungen auf die Entwicklung neuer Therapie-Konzepte
New Insights into the Pathogenesis of SLE and their Implications for the Development of New Therapeutic Concepts
Zusammenfassung
Autoantikörper sind essentiell in der Pathogenese des SLE. Sie sind das Ergebnis einer Störung des erworbenen (adaptiven) Immunsystems mit fehlender Toleranz gegen Selbst. Eine Typ-I Interferon-Signatur, die im angeborenen (innaten) Immunsystem ihren Ursprung hat, ist ein wesentlicher Treiber dieser Störung. Autoantikörper können sowohl von kurzlebigen, proliferierenden Plasmablasten, die B-Zell-Hyperaktivität widerspiegeln, als auch von langlebigen, nicht-proliferierenden Gedächtnis-Plasmazellen sezerniert werden. Gedächtnis-Plasmazellen, die in Nischen im Knochenmark und im entzündeten Gewebe lokalisiert sind, lassen sich nicht durch konventionelle Immunsuppressiva und Therapien mit B-Zellen als Target eliminieren. Konzepte, die auf die Depletion von Gedächtnis-Plasmazellen abzielen, können im Zusammenspiel mit Targets, die eine Aktivierung von autoreaktiven B-Zellen verhindern, ein kuratives Potenzial haben.
Abstract
Autoantibodies are essential in the pathogenesis of SLE. They are the result of a disorder of the acquired (adaptive) immune system with lack of tolerance to self. A type I interferon signature, which originates in the innate immune system, is a major driver of this disorder. Autoantibodies can be secreted by both short-lived, proliferating plasmablasts reflecting B-cell hyperactivity and by long-lived, non-proliferating memory plasma cells. Memory plasma cells located in niches in bone marrow and inflamed tissue cannot be eliminated by conventional immunosuppressants and therapies with B cells as a target. Concepts aiming at the depletion of memory plasma cells may have curative potential in interaction with targets that prevent the activation of autoreactive B cells.
Schlüsselwörter
Systemischer Lupus erythematodes - Autoantikörper - Pathogenese - Plasmazelle - TherapiePublikationsverlauf
Artikel online veröffentlicht:
06. August 2020
© Georg Thieme Verlag KG
Stuttgart · New York
-
Literatur
- 1 Sherer Y, Gorstein A, Fritzler MJ. et al. Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Seminars in arthritis and rheumatism 2004; 34: 501-537
- 2 Alexander T, Thiel A, Rosen O. et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 2009; 113: 214-223
- 3 Manz RA, Thiel A, Radbruch A. Lifetime of plasma cells in the bone marrow. Nature 1997; 388: 133-134 doi: 10.1038/40540
- 4 Hoyer BF, Moser K, Hauser AE. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J Exp Med 2004; 199: 1577-1584
- 5 Cheng Q, Mumtaz IM, Khodadadi L. et al. Autoantibodies from long-lived 'memory' plasma cells of NZB/W mice drive immune complex nephritis. Ann Rheum Dis 2013; 72: 2011-2017
- 6 Radbruch A, Muehlinghaus G, Luger EO. et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 2006; 6: 741-750
- 7 Manz RA, Hauser AE, Hiepe F. et al. Maintenance of serum antibody levels. Annu Rev Immunol 2005; 23: 367-386
- 8 Amanna IJ, Carlson NE, Slifka MK. Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med 2007; 357: 1903-1915 doi: 10.1056/NEJMoa066092
- 9 Hiepe F, Radbruch A. Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat Rev Nephrol 2016; 12: 232-240 doi: 10.1038/nrneph.2016.20
- 10 Mumtaz IM, Hoyer BF, Panne D. et al. Bone marrow of NZB/W mice is the major site for plasma cells resistant to dexamethasone and cyclophosphamide: implications for the treatment of autoimmunity. J Autoimmun 2012; 39: 180-188
- 11 Starke C, Frey S, Wellmann U. et al. High frequency of autoantibody-secreting cells and long-lived plasma cells within inflamed kidneys of NZB/W F1 lupus mice. Eur J Immunol 2011; 41: 2107-2112
- 12 Neubert K, Meister S, Moser K. et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 2008; 14: 748-755
- 13 Alexander T, Sarfert R, Klotsche J. et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann Rheum Dis 2015; 74: 1474-1478
- 14 Merrill JT, Wallace DJ, Wax S. et al. Efficacy and Safety of Atacicept in Patients With Systemic Lupus Erythematosus: Results of a Twenty-Four-Week, Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Arm, Phase IIb Study. Arthritis &. rheumatology 2018; 70: 266-276
- 15 Isenberg D, Gordon C, Licu D. et al. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann Rheum Dis 2015; 74: 2006-2015
- 16 Männe C, Takaya A, Yamasaki Y. et al. Salmonella SiiE prevents an efficient humoral immune memory by interfering with IgG(+) plasma cell persistence in the bone marrow. Proc Natl Acad Sci U S A 2019; 116: 7425-7430
- 17 Cheng Q, Pelz A, Taddeo A. et al. Selective depletion of plasma cells in vivo based on the specificity of their secreted antibodies. Eur J Immunol 2020; 50: 284-291
- 18 Jacobi A, Odendahl M, Hansen A. et al. Monitoring of CD27 high/CD19+peripheral B cells reflects the disease activity in patients with systemic lupus erythematosus. Arthritis and Rheumatism 2001; 44: S296-S296
- 19 Odendahl M, Jacobi A, Hansen A. et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 2000; 165: 5970-5979
- 20 Stohl W, Hiepe F, Latinis KM. et al. Belimumab reduces autoantibodies, normalizes low complement, and reduces select B-cell populations in patients with systemic lupus erythematosus. Arthritis Rheum 2012; 64: 2328-2337
- 21 Humrich JY, von Spee-Mayer C, Siegert E. et al. Low-dose interleukin-2 therapy in refractory systemic lupus erythematosus: an investigator-initiated, single-centre phase 1 and 2a clinical trial. Lancet Rheumatol 2019; 1: e44-e54
- 22 Cheng Q, Khodadadi L, Taddeo A. et al. CXCR4-CXCL12 interaction is important for plasma cell homing and survival in NZB/W mice. Eur J Immunol 2018; 48: 1020-1029
- 23 Alexander T, Cheng Q, Klotsche J. et al. Proteasome inhibition with bortezomib induces a therapeutically relevant depletion of plasma cells in SLE but does not target their precursors. Eur J Immunol 2018; 48: 1573-1579
- 24 Taddeo A, Khodadadi L, Voigt C. et al. Long-lived plasma cells are early and constantly generated in New Zealand Black/New Zealand White F1 mice and their therapeutic depletion requires a combined targeting of autoreactive plasma cells and their precursors. Arthritis Res Ther 2015; 17: 39
- 25 Khodadadi L, Cheng Q, Alexander T. et al. Bortezomib Plus Continuous B Cell Depletion Results in Sustained Plasma Cell Depletion and Amelioration of Lupus Nephritis in NZB/W F1 Mice. PLoS One 2015; 10: e0135081
- 26 Thorlacius GE, Wahren-Herlenius M, Ronnblom L. An update on the role of type I interferons in systemic lupus erythematosus and Sjogren’s syndrome. Current opinion in rheumatology 2018; 30: 471-481 doi: 10.1097/BOR.0000000000000524
- 27 Crow MK. Advances in understanding the role of type I interferons in systemic lupus erythematosus. Current opinion in rheumatology 2014; 26: 467-474 doi: 10.1097/BOR.0000000000000087
- 28 Rose T, Grutzkau A, Hirseland H. et al. IFNalpha and its response proteins, IP-10 and SIGLEC-1, are biomarkers of disease activity in systemic lupus erythematosus. Ann Rheum Dis 2013; 72: 1639-1645
- 29 Biesen R, Demir C, Barkhudarova F. et al. Sialic acid-binding Ig-like lectin I expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis and Rheumatism 2008; 58: 1136-1145
- 30 Gardet A, Pellerin A, McCarl CA. et al. Effect of in vivo Hydroxychloroquine and ex vivo Anti-BDCA2 mAb Treatment on pDC IFNalpha Production From Patients Affected With Cutaneous Lupus Erythematosus. Frontiers in immunology 2019; 10: 275
- 31 Sacre K, Criswell LA, McCune JM. Hydroxychloroquine is associated with impaired interferon-alpha and tumor necrosis factor-alpha production by plasmacytoid dendritic cells in systemic lupus erythematosus. Arthritis Res Ther 2012; 14: R155 doi: 10.1186/ar3895
- 32 Ichikawa HT, Conley T, Muchamuel T. et al. Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum 2012; 64: 493-503
- 33 Leyendeckers H, Dzionek A, Winkels G. et al. Interferon-alfa expression by plasmacytoid dendritic cells of SLE patients can be inhibited by anti-BDCA-2 antibody. Annals of the Rheumatic Diseases 2003; 62: 79-79
- 34 Crow MK, Olferiev M, Kirou KA. Targeting of type I interferon in systemic autoimmune diseases. Transl Res 2015; 165: 296-305 doi: 10.1016/j.trsl.2014.10.005
- 35 Furie R, Khamashta M, Merrill JT. et al. Anifrolumab, an Anti-Interferon-alpha Receptor Monoclonal Antibody, in Moderate-to-Severe Systemic Lupus Erythematosus. Arthritis & rheumatology 2017; 69: 376-386
- 36 Furie RA, Morand EF, Bruce IN. et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): a randomised, controlled, phase 3 trial. Lancet Rheumatol 2019; 1: e208-e219
- 37 Morand EF, Furie R, Tanaka Y. et al. Trial of Anifrolumab in Active Systemic Lupus Erythematosus. N Engl J Med 2020; 382: 211-221
- 38 Houssiau FA, Thanou A, Mazur M. et al. IFN-alpha kinoid in systemic lupus erythematosus: results from a phase IIb, randomised, placebo-controlled study. Ann Rheum Dis 2020; 79: 347-355
- 39 Sanchez GAM, Reinhardt A, Ramsey S. et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest 2018; 128: 3041-3052
- 40 Wallace DJ, Furie RA, Tanaka Y. et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2018; 392: 222-231
- 41 Aringer M, Smolen JS. Therapeutic blockade of TNF in patients with SLE-promising or crazy?. Autoimmun Rev 2012; 11: 321-325 doi: 10.1016/j.autrev.2011.05.001
- 42 van Vollenhoven RF, Hahn BH, Tsokos GC. et al. Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet 2018; 392: 1330-1339
- 43 Guimaraes PM, Scavuzzi BM, Stadtlober NP. et al. Cytokines in systemic lupus erythematosus: far beyond Th1/Th2 dualism lupus: cytokine profiles. Immunol Cell Biol 2017; 95: 824-831
- 44 Sarkar MK, Hile GA, Tsoi LC. et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis 2018; 77: 1653-1664
- 45 Sakuma Y, Nagai T, Yoshio T. et al. Differential activation mechanisms of serum C5a in lupus nephritis and neuropsychiatric systemic lupus erythematosus. Mod Rheumatol 2017; 27: 292-297
- 46 Pickering MC, Ismajli M, Condon MB. et al. Eculizumab as rescue therapy in severe resistant lupus nephritis. Rheumatology (Oxford) 2015; 54: 2286-2288
- 47 Kello N, Khoury LE, Marder G. et al. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: Case series and review of literature. Seminars in arthritis and rheumatism 2019; 49: 74-83