Subscribe to RSS
DOI: 10.1055/a-1219-8274
Knorpelregeneration mittels zellfreier Kollagen-Typ-I-Matrix – Vergangenheit, Gegenwart und Zukunft (Teil 2 – experimentelle Aspekte)
Article in several languages: English | deutschZusammenfassung
Die Knorpelregeneration mit zellfreien Matrices hat sich vor mittlerweile über 10 Jahren aus der matrixassoziierten autologen Knorpelzelltransplantation (MACT) entwickelt. Anpassungen der rechtlichen Rahmenbedingungen und höhere Hürden für die Zelltherapie haben dazu geführt, dass sich die Verfahren als eigenständige Alternative zur MACT etabliert haben. Die als matrixinduzierte autologe Knorpelregeneration (MACR) einzuordnenden Verfahren setzen sämtlich auf den chemotaktischen Reiz einer vernetzten Matrix, die zumeist aus Kollagenen besteht. Am Beispiel eines marktüblichen Kollagen-Typ-I-Hydrogels werden die physikochemischen Eigenschaften einer solchen Matrix erläutert und die hierzu vorliegenden experimentellen Daten näher beleuchtet. Das Zusammenspiel zwischen verschiedenen Zelltypen und den chemotaktischen Eigenschaften des Kollagens wurde umfangreich untersucht und bietet aus klinischer Sicht heute unterschiedliche Anknüpfungspunkte zur sinnvollen Modifikation des Verfahrens zur Verbesserung des klinischen Outcomes. Da der Ursprung der Zellen im letztlich gebildeten Regeneratgewebe nach wie vor ungeklärt ist, sind weitere Untersuchungen zur Aufklärung des genauen Wirkmechanismus jedoch zwingend erforderlich.
Publication History
Article published online:
12 October 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1 Chen FS, Frenkel SR, Cesare PED. Repair of articular cartilage defects: part I. Basic Science of cartilage healing. Am J Orthop (Belle Mead NJ) 1999; 28: 31-33
- 2 Stockwell RA. Biology of Cartilage Cells. Cambridge: Cambridge University Press Archive; 1979
- 3 Stockwell RA. The interrelationship of cell density and cartilage thickness in mammalian articular cartilage. J Anat 1971; 109: 411-421
- 4 Wilsman NJ. Cilia of adult canine articular chondrocytes. J Ultrastruct Res 1978; 64: 270-281
- 5 Stockwell RA. The ultrastructure of cartilage canals and the surrounding cartilage in the sheep fetus. J Anat 1971; 109: 397-410
- 6 Klein TJ, Malda J, Sah RL. et al. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng Part B Rev 2009; 15: 143-157 doi:10.1089/ten.teb.2008.0563
- 7 Mankin HJ, Johnson ME, Lippiello L. Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. III. Distribution and metabolism of amino sugar-containing macromolecules. J Bone Joint Surg Am 1981; 63: 131-139
- 8 Hjelle K, Solheim E, Strand T. et al. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 2002; 18: 730-734
- 9 Muir H, Bullough P, Maroudas A. The distribution of collagen in human articular cartilage with some of its physiological implications. J Bone Joint Surg Br 1970; 52: 554-563
- 10 Tillmanns RH. Über die fibrilläre Struktur des Hyalinknorpels. Arch Anat Physiol 1877; 5: 36-37
- 11 Hultkrantz W. Über die Spaltrichtungen der Gelenkknorpel. Verh Anat Ges 1898; 12: 248
- 12 Wilson W, van Donkelaar CC, van Rietbergen B. et al. Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J Biomech 2004; 37: 357-366
- 13 Bullough PG, Munuera L, Murphy J. et al. The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg Br 1970; 52: 564-567
- 14 Pachence JM. Collagen-based devices for soft tissue repair. J Biomed Mater Res A 1996; 33: 35-40 doi:10.1002/(SICI)1097-4636(199621)33:1<35::AID-JBM6>3.0.CO;2-N
- 15 Kajava AV. Molecular packing in type I collagen fibrils. A model with neighbouring collagen molecules aligned in axial register. J Mol Biol 1991; 218: 815-823
- 16 Mayer-Wagner S, Hammerschmid F, Redeker JI. et al. Simulated microgravity affects chondrogenesis and hypertrophy of human mesenchymal stem cells. Int Orthop 2014; 38: 2615-2621 doi:10.1007/s00264-014-2454-3
- 17 Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect 2005; 54: 465-480
- 18 Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull 2008; 87: 77-95 doi:10.1093/bmb/ldn025
- 19 Gavénis K, Schmidt-Rohlfing B, Mueller-Rath R. et al. In vitro comparison of six different matrix systems for the cultivation of human chondrocytes. In Vitro Cell Dev Biol Anim 2006; 42: 159-167 doi:10.1290/0511079.1
- 20 Chen G, Gharib TG, Huang C-C. et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 2002; 1: 304-313 doi:10.1074/mcp.m200008-mcp200
- 21 Gavénis K, Klee D, Pereira-Paz RM. et al. BMP-7 loaded microspheres as a new delivery system for the cultivation of human chondrocytes in a collagen type-I gel. J Biomed Mater Res B Appl Biomater 2007; 82: 275-283 doi:10.1002/jbm.b.30731
- 22 Niethard M, Schneider U, Wallich R. [Differential behaviour of human adult arthrotic chondrocytes under 2D- and 3D-cultivation set-ups in a collagen I gel]. Z Orthop Ihre Grenzgeb 2007; 145: 102-107 doi:10.1055/s-2007-960533
- 23 Gavénis K, Kremer A, von Walter M. et al. Effects of cyclic hydrostatic pressure on the metabolism of human osteoarthritic chondrocytes cultivated in a collagen gel. Artif Organs 2007; 31: 91-98 doi:10.1111/j.1525-1594.2007.00347.x
- 24 Gravius S, Schneider U, Mumme T. et al. [Osteochondral marker proteins in the quantitative evaluation of matrix-based autologous chondrocyte transplantation CaRes]. Z Orthop Unfall 2007; 145: 625-632 doi:10.1055/s-2007-965724
- 25 Müller-Rath R, Gavénis K, Andereya S. et al. A novel rat tail collagen type-I gel for the cultivation of human articular chondrocytes in low cell density. Int J Artif Organs 2007; 30: 1057-1067 doi:10.1177/039139880703001205
- 26 Gavenis K, Schneider U, Groll J. et al. BMP-7-loaded PGLA microspheres as a new delivery system for the cultivation of human chondrocytes in a collagen type I gel: the common nude mouse model. Int J Artif Organs 2010; 33: 45-53
- 27 Müller-Rath R, Gavénis K, Andereya S. et al. Condensed cellular seeded collagen gel as an improved biomaterial for tissue engineering of articular cartilage. Biomed Mater Eng 2010; 20: 317-328 doi:10.3233/bme-2010-0645
- 28 Schneider U, Schmidt-Rohlfing B, Gavenis K. et al. A comparative study of 3 different cartilage repair techniques. Knee Surg Sports Traumatol Arthrosc 2011; 19: 2145-2152 doi:10.1007/s00167-011-1460-x
- 29 Gavenis K, Schneider U, Maus U. et al. Cell-free repair of small cartilage defects in the Goettinger minipig: which defect size is possible?. Knee Surg Sports Traumatol Arthrosc 2012; 20: 2307-2314 doi:10.1007/s00167-011-1847-8
- 30 Gavenis K, Heussen N, Hofman M. et al. Cell-free repair of small cartilage defects in the Goettinger minipig: the effects of BMP-7 continuously released by poly(lactic-co-glycolid acid) microspheres. J Biomater Appl 2014; 28: 1008-1015 doi:10.1177/0885328213491440
- 31 Efe T, Theisen C, Fuchs-Winkelmann S. et al. Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc 2012; 20: 1915-1922 doi:10.1007/s00167-011-1777-5
- 32 Schneider U, Rackwitz L, Andereya S. et al. A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 2011; 39: 2558-2565 doi:10.1177/0363546511423369
- 33 Haasper C. Comment on Roessler et al.: Short-term follow up after implantation of a cell-free collagen type I matrix for the treatment of large cartilage defects of the knee. Int Orthop 2016; 40: 643 doi:10.1007/s00264-015-3006-1
- 34 Roessler PP, Efe T. Comment on Roessler et al.: Short-term follow up after implantation of a cell-free collagen type I matrix for the treatment of large cartilage defects of the knee. Int Orthop 2016; 40: 645-646 doi:10.1007/s00264-015-3056-4
- 35 Roessler PP, Pfister B, Gesslein M. et al. Short-term follow up after implantation of a cell-free collagen type I matrix for the treatment of large cartilage defects of the knee. Int Orthop 2015; 39: 2473-2479 doi:10.1007/s00264-015-2695-9
- 36 Guenther D, Oks A, Ettinger M. et al. Enhanced migration of human bone marrow stromal cells in modified collagen hydrogels. Int Orthop 2013; 37: 1605-1611 doi:10.1007/s00264-013-1894-5