Dtsch Med Wochenschr 2022; 147(01/02): 17-25
DOI: 10.1055/a-1226-9091
Dossier

Die Rolle der Mikrozirkulation in der Entstehung des Organversagens

The role of the microcirculation in the pathogenesis of organ dysfunction
Matthias Noitz
,
Christoph Steinkellner
,
Mark Philipp Willingshofer
,
Johannes Szasz
,
Martin Dünser

Die Mikrozirkulation umfasst alle Blut- und Lymphgefäße mit einem Durchmesser < 100 µm. Störungen der Mikrozirkulation finden sich bei kritisch kranken Patienten häufig und weisen einen engen Zusammenhang mit dem Schweregrad der (Multi-)Organdysfunktion sowie der Sterblichkeit auf. Dieser Beitrag bietet eine Übersicht über die Pathophysiologie, das Monitoring und die Therapie der Mikrozirkulationsstörung beim kritisch kranken Patienten.

Abstract

The microcirculation includes all blood and lymph vessels with a diameter < 100 µm. Microcirculatory dysfunction is common in critically ill patients and is closely associated with both the severity of (multi-)organ dysfunction and mortality. The nature and extent of microcirculatory dysfunction differ depending on the underlying disease and are most pronounced in patients with systemic inflammation (e. g. sepsis), specific infections (e. g. malaria, dengue) or thrombocytopenia-associated multiple organ failure. This manuscript provides an overview of the pathophysiology, monitoring and therapy of microcirculatory dysfunction in the critically ill patient.



Publikationsverlauf

Artikel online veröffentlicht:
28. Dezember 2021

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Guven G, Hilty MP, Ince C. Microcirculation: Physiology, Pathophysiology and Clinical Application. Blood Purif 2020; 49: 143-150
  • 2 De Backer D, Creteur J, Dubois MJ. et al. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 2004; 147: 91-99
  • 3 Huchtings SD, Naumann DN, Hopkins P. et al. Microcirculatory impairment is associated with multiple organ dysfunction following traumatic hemorrhagic shock: The MICROSHOCK Study. Crit Care Med 2018; 46: e889-e896
  • 4 De Backer D, Cortes DO, Donadello K. et al. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence 2014; 5: 73-79
  • 5 Omar YG, Massey M, Andersen LW. et al. Sublingual microcirculation is impaired in post-cardiac arrest patients. Resuscitation 2013; 84: 1717-1722
  • 6 Yu L, Bloom SI, Donato AJ. The role of senescence, telomer dysfunction and shelterin in vascular aging. Microcirculation 2019; 26: e12487
  • 7 Moore JPR, Dyson A, Singer M. et al. Microcirculatory dysfunction and resuscitation: why, when, and how. BJA 2015; 115: 366-375
  • 8 Jedlicka J, Becker BF, Chappell D. Endothelial glycocalyx. Crit Care Clin 2020; 36: 217-232
  • 9 Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care 2015; 19: S8
  • 10 Ospina-Tascon G, Neves AP, Occhipinti G. et al. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 2010; 36: 949-955
  • 11 De Backer D, Creteur J, Preiser JC. et al. Microvascular blood flow is altered in patients with sepsis. Am J Resp Crit Care Med 2002; 166: 98-104
  • 12 Nguyen TC. Thrombocytopenia-associated multiple organ failure. Crit Care Clin 2020; 36: 379-390
  • 13 Dünser MW, Mayr AJ, Tür A. et al. Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med 2003; 31: 1394-1398
  • 14 Vellinga NA, Ince C, Boerma EC. Elevated central venous pressure is associated with impairment of microcirculatory flow in sepsis: a hypothesis generating post hoc analysis. BMC Anesthesiol 2013; 13: 17
  • 15 Cortés DO, Puflea F, Donadello K. et al. Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvasc Res 2015; 98: 23-28
  • 16 Espinoza EDV, Pozo MO, Edual VSK. et al. Effects of short-term hyperoxia on systemic hemodynamics, oxygen transport, and microcirculation: An observational study in patients with septic shock and healthy volunteers. J Crit Care 2019; 53: 62-68
  • 17 Szasz J, Noitz M, Dünser M. Diagnosing acute organ ischemia: A practical guide for the emergency and intensive care phyisician. Med Klin Intensivmed Notfmed 2020; 115: 159-172
  • 18 Hernandez G, Castro R, Bakker J. Capillary refill time: the missing link between microcirculation and microcirculation in septic shock?. J Thorac Dis 2020; 12: 1127-1129
  • 19 Lima A, Bakker J. Noninvasive monitoring of peripheral perfusion. Intensive Care Med 2005; 31: 1316-1326
  • 20 Miranda M, Balarini M, Caixeta D. et al. Microcirculatory dysfunction in sepsis: pathophysiology, clinical monitoring, and potential therapies. Am J Physiol Heart Circ Physiol 2016; 311: H24-H35
  • 21 De Backer D, Creteur J, Dubois MJ. et al. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 2006; 34: 403-408
  • 22 Dépret F, Sitbon A, Soussi S. et al. Intra-venous iloprost to recruit the microcirculation in septic shock patients?. Intensive Care Med 2018; 44: 121-122