Subscribe to RSS
DOI: 10.1055/a-1226-9164
Intensivmedizinisches Monitoring
Intensive care monitoringDie Möglichkeit des Monitorings kompensiert bei den sehr häufig komplexen multimorbiden Patienten und ihren sehr dynamischen Krankheitsverläufen den Mangel an universal anwendbaren Behandlungsprotokollen. In Zukunft könnten auf künstlicher Intelligenz beruhende Clinical-Decision-Support-Systeme Intensivmediziner bei der Analyse der Monitoring-Daten und z. B. im Hinblick auf die individuelle Prognoseeinschätzung oder Therapieauswahl unterstützen.
Abstract
Monitoring the function of essential organ systems is a hallmark of critical care. In combination with the medical history, physical examination and selective diagnostic tests. Monitoring facilitates the bed-side diagnosis of many diseases in critical care and guides therapeutic management while providing optimal patient safety. The availability of monitoring compensates in the very often complex and multimorbid patients and the very dynamic course of their diseases the lack of universally applicable treatment protocols, that are based on the results of randomized critical care trials. In the future clinical decision support systems based on artificial intelligence might support intensivists in the analysis of monitoring data in terms of individual prognosis assessment and choice of therapy.
Schlüsselwörter
Intensivmedizin - Monitoring - Intensivtherapie - Patient Data Management System - Clinical Decision Support SystemKey words
intensive care medicine - monitoring - critical care - patient data management system - clinical decision support systemPublication History
Article published online:
28 December 2021
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Monitoring. Im Internet: Wikipedia. (Stand: 25.10.2021) https://de.wikipedia.org/wiki/Monitoring
- 2 Teboul JL, Saugel B, Cecconi M. et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med 2016; 42: 1350-1359
- 3 Janssens PDU. [Hemodynamic monitoring of critically ill patients: Bedside integration of data]. Med Klin Intensivmed Notfmed 2016; 111 (07) 619-629
- 4 Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI), Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin (DIVI). S3-Leitlinie Analgesie, Sedierung und Delirmanagement in der Intensivmedizin (DAS-Leitlinie 2020). AWMF-Registernummer: 001/012. Im Internet (Stand: 25.10.2021): https://www.awmf.org/leitlinien/detail/ll/001-012.html
- 5 De Backer D, Vincent JL. Should we measure the central venous pressure to guide fluid management? Ten answers to 10 questions. Crit Care 2018; 22: 43
- 6 Saugel B, Vincent JL. Cardiac output monitoring: how to choose the optimal method for the individual patient. Curr Opin Crit Care 2018; 24: 165-172
- 7 Paine CW, Goel VV, Ely E. et al. Systematic Review of Physiologic Monitor Alarm Characteristics and Pragmatic Interventions to Reduce Alarm Frequency. J Hosp Med 2016; 11: 136-144
- 8 Hillmann B, Schwarzkopf D, Manser T. et al. Structure and concept of ICU rounds: the VIS-ITS survey. Med Klin Intensivmed Notfmed 2021;
- 9 von Dincklage F, Suchodolski K, Lichtner G. et al. Investigation of the Usability of Computerized Critical Care Information Systems in Germany. J Intensive Care Med 2019; 34: 227-237
- 10 Baumgärtel M, Riessen R, John S. Digitalisierung in der Intensivmedizin. Dtsch med Wochenschr 2019; 144: 436-441
- 11 Riessen R, Hellwege RS. Medikamentöse Therapie des Kreislaufschocks. Med Klin Intensivmed Notfmed 2021; 116: 541-553
- 12 Brunkhorst FM, Weigand M, Pletz M. et al S3-Leitlinie Sepsis – Prävention, Diagnose, Therapie und Nachsorge. AWMF-Registernummer: 079-001. Im Internet (Stand: 25.10.2021): https://www.awmf.org/leitlinien/detail/ll/079-001.html
- 13 Gottlieb J, Capetian P, Hamsen U. et al Sauerstofftherapie in der Akuttherapie von Erwachsenen. AWMF-Registernummer: 020-021. Im Internet (Stand: 25.10.2021): https://www.awmf.org/leitlinien/detail/ll/020-021.html
- 14 Nolan JP, Sandroni C, Böttiger BW. et al. Postreanimationsbehandlung. Notfall Rettungsmed 2021; 24: 524-576
- 15 Dankiewicz J, Cronberg T, Lilja G. et al. Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest. N Engl J Med 2021; 384: 2283-2294
- 16 Young PJ, Bellomo R, Bernard GR. et al. Fever control in critically ill adults. An individual patient data meta-analysis of randomised controlled trials. Intensive Care Med 2019; 45: 468-476
- 17 Hoste EA, Maitland K, Brudney CS. et al. Four phases of intravenous fluid therapy: a conceptual model. Br J Anaesth 2014; 113: 740-747
- 18 Haas SA, Lange T, Saugel B. et al. Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients. Intensive Care Med 2016; 42: 202-210
- 19 Oba Y, Zaza T. Abandoning Daily Routine Chest Radiography in the Intensive Care Unit: Meta-Analysis. Radiology 2010; 255: 386-395
- 20 Adamzik M, Bauer A, Bein T. et al S3-Leitlinie Invasive Beatmung und Einsatz extrakorporaler Verfahren bei akuter respiratorischer Insuffizienz. AWMF-Registernummer: 001/021. Im Internet (Stand: 25.10.2021): https://www.awmf.org/leitlinien/detail/ll/001-021.html
- 21 Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS: Rationale for protecting the right ventricle. Chest 2015; 147: 259-265
- 22 Reinink H, Jüttler E, Hacke W. et al. Surgical Decompression for Space-Occupying Hemispheric Infarction: A Systematic Review and Individual Patient Meta-analysis of Randomized Clinical Trials. JAMA Neurol 2021; 78: 208-216
- 23 Sprung CL, Ricou B, Hartog CS. et al. Changes in End-of-Life Practices in European Intensive Care Units From 1999 to 2016. JAMA 2019; 322: 1692-1704
- 24 Vincent JL. The Future of Critical Care Medicine: Integration and Personalization. Critic Care Med 2016; 44: 386-389
- 25 Santacruz CA, Pereira AJ, Celis E. et al. Which Multicenter Randomized Controlled Trials in Critical Care Medicine Have Shown Reduced Mortality? A Systematic Review. Criti Care Med 2019; 47: 1680-1691
- 26 Muralitharan S, Nelson W, Di S. et al. Machine Learning-Based Early Warning Systems for Clinical Deterioration: Systematic Scoping Review. J Med Internet Res 2021; 23: e25187
- 27 Dziadzko MA, Novotny PJ, Sloan J. et al. Multicenter derivation and validation of an early warning score for acute respiratory failure or death in the hospital. Critic Care 2018; 22: 286
- 28 Shillan D, Sterne JAC, Champneys A. et al. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Critic Care 2019; 23: 284