Subscribe to RSS
DOI: 10.1055/a-1234-7151
Reference Values for Pulmonary Single-Breath Diffusing Capacity – Results of the “Study of Health in Pomerania”
Referenzwerte für Parameter der Diffusionskapazität – Ergebnisse der Study of Health in Pomerania The work is part of the Community Medicine Research net (CMR) of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. ZZ9603, 01ZZ0103, 01ZZ0403), Competence Network Asthma/ COPD (FKZ 01GI0881-0888), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania. The CMR encompasses several research projects which share data of the population-based Study of Health in Pomerania (SHIP; http://ship.community-medicine.de).Abstract
Objectives The assessment of pulmonary single-breath diffusing capacity is a frequently performed diagnostic procedure and considered as an important tool in medical surveillance examinations of pulmonary diseases.
The aim of this study was to establish reference equations for pulmonary single-breath diffusing capacity parameters in a representative adult-population across a wide age range and to compare the normative values from this sample with previous ones.
Methods Diffusing capacity measurement was carried out in 3566 participants (1811 males) of a cross-sectional, population-based survey (“Study of Health in Pomerania – SHIP”).
Results Individuals with cardiopulmonary disorders and current smoking habits were excluded, resulting in 1786 healthy individuals (923 males), aged 20 – 84 years. Prediction equations for both sexes were established by quantile regression analyses, taking into consideration the influence of age, height, weight and former smoking.
Conclusion The study provides a novel set of prediction equations for pulmonary single-breath diffusing capacity in an adult Caucasian population. The results are comparable to previously reported equations, underline their importance and draw attention to the need for up-to-date reference equations that adequately take into account both the subjects’ origin, age, anthropometric characteristics and the equipment used.
Zusammenfassung
Ziel Die Erhebung der Diffusionskapazitätsparameter im Rahmen der Lungenfunktionsdiagnostik ist eine häufig angewandte Methode im klinischen Alltag, die der Beurteilung von funktionellen Einschränkungen dient. Mit der vorliegenden Arbeit wurden Referenzwerte für diese Parameter anhand einer gesunden Normalbevölkerungsstichprobe erhoben und mit bereits etablierten Referenzwerten verglichen.
Methode Die Messung der Diffusionskapazität erfolgte an 3566 Probanden (1811 männlich) einer populationsbasierten Querschnittstudie (Study of Health in Pomerania).
Ergebnisse Probanden mit kardiopulmonalen Erkrankungen oder fortgesetztem Nikotinabusus wurden von den Analysen ausgeschlossen, sodass die Daten von 1786 Gesunden (923 Männer) im Alter von 20 – 84 Jahren zur Verfügung standen. Normwertformeln für beide Geschlechter wurden anhand quantiler Regressionsanalysen erstellt und für Alter, Größe, Gewicht und früheren Nikotinabusus adjustiert.
Schlussfolgerung Die vorliegende Studie liefert Normwertformeln für Parameter der Diffusionsmessung, erhoben an einer erwachsenen kaukasischen Normalbevölkerungsstichprobe. Die Ergebnisse sind gut vergleichbar mit denen früherer Untersuchungen und untermauern deren Bedeutung. Die Etablierung von Normwerten für die Parameter der Diffusionskapazität sollte Herkunft, Alter und anthropometrische Charakteristika berücksichtigen.
Publication History
Received: 17 May 2020
Accepted: 30 July 2020
Article published online:
20 August 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Krogh M. The diffusion of gases through the lungs of man. J Physiol 1915; 49: 271-300
- 2 Morrell MJ. One hundred years of pulmonary function testing: a perspective on ‘The diffusion of gases through the lungs of man’ by Marie Krogh. J Physiol 2015; 593: 351-352
- 3 Schaufelberger M. Pulmonary diffusion capacity as prognostic marker in chronic heart failure. Eur Heart J 2002; 23: 429-431
- 4 Trip P, Nossent EJ, de Man FS. et al. Severely reduced diffusion capacity in idiopathic pulmonary arterial hypertension: patient characteristics and treatment responses. Eur Respir J 2013; 42: 1575-1585
- 5 Zelenika D, Karanovic N. Diffusion lung capacity of patients with arterial hypertension. Collegium antropologicum 2009; 33 (Suppl. 02) 165-167
- 6 Weinreich UM, Thomsen LP, Brock C. et al. Diffusion capacity of the lung for carbon monoxide – A potential marker of impaired gas exchange or of systemic deconditioning in chronic obstructive lung disease?. Chron Respir Dis 2015; 12: 357-364
- 7 Hamada K, Nagai S, Tanaka S. et al. Significance of pulmonary arterial pressure and diffusion capacity of the lung as prognosticator in patients with idiopathic pulmonary fibrosis. Chest 2007; 131: 650-656
- 8 Hoeper MM, Meyer K, Rademacher J. et al. Diffusion Capacity and Mortality in Patients With Pulmonary Hypertension Due to Heart Failure With Preserved Ejection Fraction. JACC Heart Fail 2016; 4: 441-449
- 9 Klein OL, Kalhan R, Williams MV. et al. Lung spirometry parameters and diffusion capacity are decreased in patients with Type 2 diabetes. Diabet Med 2012; 29: 212-219
- 10 Ewert R, Opitz C, Wensel R. et al. Abnormalities of pulmonary diffusion capacity in long-term survivors after kidney transplantation. Chest 2002; 122: 639-644
- 11 Ewert R, Wensel R, Bruch L. et al. Relationship between impaired pulmonary diffusion and cardiopulmonary exercise capacity after heart transplantation. Chest 2000; 117: 968-975
- 12 Brunelli A, Refai MA, Salati M. et al. Carbon monoxide lung diffusion capacity improves risk stratification in patients without airflow limitation: evidence for systematic measurement before lung resection. Eur J Cardiothorac Surg 2006; 29: 567-570
- 13 Chang PM, Chiou TJ, Yen CC. et al. Diffusion capacity predicts long-term survival after allogeneic bone marrow transplantation for acute lymphoblastic leukemia. Journal of the Chinese Medical Association: JCMA 2008; 71: 234-240
- 14 Le Bourgeois A, Malard F, Chevallier P. et al. Impact of pre-transplant diffusion lung capacity for nitric oxide (DLNO) and of DLNO/pre-transplant diffusion lung capacity for carbon monoxide (DLNO/DLCO) ratio on pulmonary outcomes in adults receiving allogeneic stem cell transplantation for hematological diseases. Bone Marrow Transplant 2016; 51: 589-592
- 15 Pesola GR, Sunmonu Y, Huggins G. et al. Measured diffusion capacity versus prediction equation estimates in blacks without lung disease. Respiration 2004; 71: 484-492
- 16 Chinn DJ, Cotes JE, Flowers R. et al. Transfer factor (diffusing capacity) standardized for alveolar volume: validation, reference values and applications of a new linear model to replace KCO (TL/VA). Eur Respir J 1996; 9: 1269-1277
- 17 Vazquez-Garcia JC, Perez-Padilla R, Casas A. et al. Reference Values for the Diffusing Capacity Determined by the Single-Breath Technique at Different Altitudes: The Latin American Single-Breath Diffusing Capacity Reference Project. Respir Care 2016; 61: 1217-1223
- 18 Crapo RO, Morris AH. Standardized single breath normal values for carbon monoxide diffusing capacity. The American review of respiratory disease 1981; 123: 185-189
- 19 Ip MS, Lam WK, Lai AY. et al. Reference values of diffusing capacity of non-smoking Chinese in Hong Kong. Respirology 2007; 12: 599-606
- 20 Garcia-Rio F, Dorgham A, Galera R. et al. Prediction equations for single-breath diffusing capacity in subjects aged 65 to 85 years. Chest 2012; 142: 175-184
- 21 Thompson BR, Johns DP, Bailey M. et al. Prediction equations for single breath diffusing capacity (Tlco) in a middle aged caucasian population. Thorax 2008; 63: 889-893
- 22 Michailopoulos P, Kontakiotis T, Spyratos D. et al. Reference Equations for Static Lung Volumes and TLCO from a Population Sample in Northern Greece. Respiration 2015; DOI: 10.1159/000371469.
- 23 Cotes JE, Chinn DJ, Quanjer PH. et al. Standardization of the measurement of transfer factor (diffusing capacity). Eur Respir J 1993; 6 (Suppl. 16) 41-52
- 24 Graham BL, Brusasco V, Burgos F. et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J 2017; 49: 1600016
- 25 Volzke H, Alte D, Schmidt CO. et al. Cohort profile: the study of health in Pomerania. Int J Epidemiol 2011; 40: 294-307
- 26 Ewert R, Ittermann T, Bollmann T. et al. Lung Health Data of the Study of Health in Pomerania – a Review of Samples, Methods and First Results. Pneumologie 2017; 71: 17-35
- 27 WHO e. WHO Collaborating Centre for Drug Statistics Methodology. Geneva: WHO; 2005
- 28 Nelson SB, Gardner RM, Crapo RO. et al. Performance evaluation of contemporary spirometers. Chest 1990; 97: 288-297
- 29 Standardization of spirometry --1987 update. Statement of the American Thoracic Society. Am Rev Respir Dis 1987; 136: 1285-1298
- 30 Wanger J, Clausen JL, Coates A. et al. Standardisation of the measurement of lung volumes. Eur Respir J 2005; 26: 511-522
- 31 Stanojevic S, Graham BL, Cooper BG. et al. Official ERS technical standards: Global Lung Function Initiative reference values for the carbon monoxide transfer factor for Caucasians. Eur Respir J 2017; 50: 17000.10
- 32 Roberts CM, MacRae KD, Winning AJ. et al. Reference values and prediction equations for normal lung function in a non-smoking white urban population. Thorax 1991; 46: 643-650
- 33 Degens H, Rittweger J, Parviainen T. et al. Diffusion capacity of the lung in young and old endurance athletes. Int J Sports Med 2013; 34: 1051-1057
- 34 Glaeser S, Schaeper C, Ittermann T. et al. Reference Values for Cardiopulmonary Exercise Testing in Obese Caucasians – The SHIP Study. Am J Resp Crit Care 2009; 179: A2041
- 35 Koch B, Schaper C, Ittermann T. et al. Reference values for cardiopulmonary exercise testing in healthy volunteers: the SHIP study. Eur Respir J 2009; 33: 389-397
- 36 Roca J, Rodriguez-Roisin R, Cobo E. et al. Single-breath carbon monoxide diffusing capacity prediction equations from a Mediterranean population. Am Rev Respir Dis 1990; 141: 1026-1032
- 37 Koch B, Schaper C, Ewert R. et al. Lung function reference values in different German populations. Respir Med 2011; 105: 352-362
- 38 Quanjer PH, Tammeling GJ, Cotes JE. et al. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl 1993; 16: 5-40
- 39 Verbanck S, Van Muylem A, Schuermans D. et al. Transfer factor, lung volumes, resistance and ventilation distribution in healthy adults. Eur Respir J 2016; 47: 166-176
- 40 Quanjer PH, Kubota M, Kobayashi H. et al. Secular changes in relative leg length confound height-based spirometric reference values. Chest 2015; 147: 792-797
- 41 Shohaimi S, Welch A, Bingham S. et al. Area deprivation predicts lung function independently of education and social class. Eur Respir J 2004; 24: 157-161
- 42 Myint PK, Luben RN, Surtees PG. et al. Respiratory function and self-reported functional health: EPIC-Norfolk population study. Eur Respir J 2005; 26: 494-502