Subscribe to RSS
DOI: 10.1055/a-1250-8471
Laser Pointer: A Possible Risk for the Retina
Article in several languages: English | deutschAbstract
In recent years, an increasing incidence of laser pointer-associated retinal injuries has been observed, likely due to easy access to incorrectly classified laser pointers, their labelling as toys, and lack of awareness concerning the associated risk. Laser pointer exposure can lead to irreversible retinal damage and associated vision loss, depending on the wavelength, radiation power, duration of exposure, localization, and spot size. Pronounced retinal laser damage is especially seen in children and teenagers. The structural appearance of retinal laser pointer damage varies and, in some cases, may be a diagnostic challenge. Besides often subtle findings on optical coherence tomography examination, characteristic alterations on near-infrared autofluorescence imaging may be valuable for the diagnosis of retinal laser pointer injuries and for differentiating other retinal lesions with similar appearance. The increase in laser pointer injuries indicates that regulatory actions and increased public awareness are required regarding the dangers of laser pointers.
Publication History
Received: 07 July 2020
Accepted: 21 August 2020
Article published online:
15 October 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1 International Electrotechnical Commission. IEC60825-1 2014. Safety of laser products: Part 1 – Equipment classification and requirements. Geneva: IEC; 2014
- 2 Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. Technische Spezifikation zu Lasern als bzw. in Verbraucherprodukte(n). 2014 Accessed July 1, 2020 at: https://www.baua.de/DE/Themen/Anwendungssichere-Chemikalien-und-Produkte/Produktsicherheit/Laserprodukte/pdf/Technische-Spezifikation-Laser.pdf?__blob=publicationFile&v=4
- 3 Birtel J, Harmening WM, Krohne TU. et al. Retinal Injury Following Laser Pointer Exposure. Dtsch Arztebl Int 2017; 114: 831-837
- 4 Hadler J, Tobares E, Dowell M. Random testing reveals excessive power in commercial laser pointers. J Laser Appl 2013; 25: 032007
- 5 Ajudua S, Mello MJ. Shedding some light on laser pointer eye injuries. Pediatr Emerg Care 2007; 23: 669-672
- 6 Berufsgenossenschaft der Feinmechanik und Elektrotechnik. Betrieb von Lasereinrichtungen. 11/2001. Anwendung der Unfallverhütungsvorschrift „Laserstrahlung“ BGV B2 auf neue Laserklassen und MZB-Werte nach DIN EN 60 825-1(VDE 0837-1). Accessed July 1 at: https://www.umwelt-online.de/regelwerk/cgi-bin/suchausgabe.cgi?pfad=/arbeitss/uvv/bgi/832a.htm&such=Arbeiten UV-Licht
- 7 Strahlenschutzkommission. Blendattacken durch Laser Empfehlung der Strahlenschutzkommission. 246 Sitzung der Strahlenschutzkommission am 02/03 Dezember 2010. Accessed July 1, 2020 at: https://www.ssk.de/SharedDocs/Beratungsergebnisse_PDF/2010/2010_12.pdf?__blob=publicationFile
- 8 Barkana Y, Belkin M. Laser eye injuries. Surv Ophthalmol 2000; 44: 459-478
- 9 Ueda T, Kurihara I, Koide R. A case of retinal light damage by green laser pointer (Class 3b). Jpn J Ophthalmol 2011; 55: 428-430
- 10 Ziahosseini K, Doris JP, Turner GS. Laser eye injuries. Maculopathy from handheld green diode laser pointer. BMJ 2010; 340: c2982
- 11 Reidenbach H-D, Hofmann J, Dollinger K, Ott G. Abwendungsreaktionen des Menschen gegenüber sichtbarer Laserstrahlung. Schriftenreihe der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. Bremerhaven: Wirtschaftsverlag NW; 2006
- 12 Robertson DM, McLaren JW, Salomao DR. et al. Retinopathy from a green laser pointer: a clinicopathologic study. Arch Ophthalmol 2005; 123: 629-633
- 13 Marshall J, Hamilton AM, Bird AC. Histopathology of ruby and argon laser lesions in monkey and human retina. A comparative study. Br J Ophthalmol 1975; 59: 610-630
- 14 Hunter JJ, Morgan JI, Merigan WH. et al. The susceptibility of the retina to photochemical damage from visible light. Prog Retin Eye Res 2012; 31: 28-42
- 15 De Silva SR, Neffendorf JE, Birtel J. et al. Improved Diagnosis of Retinal Laser Injuries Using Near-Infrared Autofluorescence. Am J Ophthalmol 2019; 208: 87-93
- 16 Linton E, Walkden A, Steeples LR. et al. Retinal burns from laser pointers: a risk in children with behavioural problems. Eye (Lond) 2019; 33: 492-504
- 17 Simonett JM, Scarinci F, Labriola LT. et al. A case of recurrent, self-inflicted handheld laser retinopathy. J AAPOS 2016; 20: 168-170
- 18 Bhavsar KV, Wilson D, Margolis R. et al. Multimodal imaging in handheld laser-induced maculopathy. Am J Ophthalmol 2015; 159: 227-231.e2
- 19 Neffendorf JE, Hildebrand GD, Downes SM. Handheld laser devices and laser-induced retinopathy (LIR) in children: an overview of the literature. Eye (Lond) 2019; 33: 1203-1214
- 20 Birtel J, Gliem M, Holz FG. et al. [Imaging and molecular genetic diagnostics for the characterization of retinal dystrophies]. Ophthalmologe 2018; 115: 1021-1027
- 21 Hossein M, Bonyadi J, Soheilian R. et al. SD-OCT features of laser pointer maculopathy before and after systemic corticosteroid therapy. Ophthalmic Surg Lasers Imaging 2011; 42: e135-e138
- 22 Lally DR, Duker JS. Foveal injury from a red laser pointer. JAMA Ophthalmol 2014; 132: 297
- 23 Raoof N, Bradley P, Theodorou M. et al. The New Pretender: A Large UK Case Series of Retinal Injuries in Children Secondary to Handheld Lasers. Am J Ophthalmol 2016; 171: 88-94
- 24 Bernstein PS, Steffensmeier A. Optical coherence tomography before and after repair of a macular hole induced by an unintentional argon laser burn. Arch Ophthalmol 2005; 123: 404-405
- 25 Mainster MA, Stuck BE, Brown J. Assessment of alleged retinal laser injuries. Arch Ophthalmol 2004; 122: 1210-1217
- 26 Alsulaiman SM, Alrushood AA, Almasaud J. et al. Full-Thickness Macular Hole Secondary to High-Power Handheld Blue Laser: Natural History and Management Outcomes. Am J Ophthalmol 2015; 160: 107-113.e1
- 27 Alsulaiman SM, Alrushood AA, Almasaud J. et al. High-power handheld blue laser-induced maculopathy: the results of the King Khaled Eye Specialist Hospital Collaborative Retina Study Group. Ophthalmology 2014; 121: 566-572.e1
- 28 Thach AB, Lopez PF, Snady-McCoy LC. et al. Accidental Nd : YAG laser injuries to the macula. Am J Ophthalmol 1995; 119: 767-773
- 29 Shenoy R, Bialasiewicz AA, Bandara A. et al. Retinal Damage from Laser Pointer Misuse – Case Series from the Military Sector in Oman. Middle East Afr J Ophthalmol 2015; 22: 399-403
- 30 Fujinami K, Yokoi T, Hiraoka M. et al. Choroidal neovascularization in a child following laser pointer-induced macular injury. Jpn J Ophthalmol 2010; 54: 631-633
- 31 Wyrsch S, Baenninger PB, Schmid MK. Retinal injuries from a handheld laser pointer. N Engl J Med 2010; 363: 1089-1091
- 32 Kandari JA, Raizada S, Razzak AA. Accidental Laser Injury to the Eye. Ophthalmic Surg Lasers Imaging 2010;
- 33 Xu K, Chin EK, Quiram PA. et al. Retinal Injury Secondary to Laser Pointers in Pediatric Patients. Pediatrics 2016; 138: e20161188 doi:10.1542/peds.2016-1188
- 34 Amoroso F, Souied EH, Ansary MF. et al. Optical coherence tomography angiography findings of choroidal neovascularization secondary to laser injury: A case report. Am J Ophthalmol Case Rep 2020; 19: 100767
- 35 Keilhauer CN, Delori FC. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci 2006; 47: 3556-3564
- 36 Charbel Issa P, Barnard AR, Singh MS. et al. Fundus autofluorescence in the Abca4(-/-) mouse model of Stargardt disease–correlation with accumulation of A2E, retinal function, and histology. Invest Ophthalmol Vis Sci 2013; 54: 5602-5612
- 37 Kellner S, Kellner U, Weber BH. et al. Lipofuscin- and melanin-related fundus autofluorescence in patients with ABCA4-associated retinal dystrophies. Am J Ophthalmol 2009; 147: 895-902 902.e1
- 38 Cideciyan AV, Swider M, Schwartz SB. et al. Predicting Progression of ABCA4-Associated Retinal Degenerations Based on Longitudinal Measurements of the Leading Disease Front. Invest Ophthalmol Vis Sci 2015; 56: 5946-5955
- 39 Greenstein VC, Schuman AD, Lee W. et al. Near-infrared autofluorescence: its relationship to short-wavelength autofluorescence and optical coherence tomography in recessive Stargardt disease. Invest Ophthalmol Vis Sci 2015; 56: 3226-3234
- 40 Birtel J, Salvetti AP, Jolly JK. et al. Near-Infrared Autofluorescence in Choroideremia: Anatomic and Functional Correlations. Am J Ophthalmol 2019; 199: 19-27
- 41 Müller PL, Birtel J, Herrmann P. et al. Functional Relevance and Structural Correlates of Near Infrared and Short Wavelength Fundus Autofluorescence Imaging in ABCA4-Related Retinopathy. Transl Vis Sci Technol 2019; 8: 46
- 42 Birtel J, Eisenberger T, Gliem M. et al. Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci Rep 2018; 8: 4824
- 43 Birtel J, Gliem M, Mangold E. et al. Next-generation sequencing identifies unexpected genotype-phenotype correlations in patients with retinitis pigmentosa. PLoS One 2018; 13: e0207958
- 44 Kellner U, Kellner S, Saleh M. et al. [Congenital Retinal Dystrophies: Combining Ophthalmological Techniques to Improve the Read-out]. Klin Monbl Augenheilkd 2020; 237: 275-287
- 45 Zhang L, Zheng A, Nie H. et al. Laser-Induced Photic Injury Phenocopies Macular Dystrophy. Ophthalmic Genet 2016; 37: 59-67
- 46 Charbel Issa P, Gillies MC, Chew EY. et al. Macular telangiectasia type 2. Prog Retin Eye Res 2013; 34: 49-77
- 47 Sethi CS, Grey RH, Hart CD. Laser pointers revisited: a survey of 14 patients attending casualty at the Bristol Eye Hospital. Br J Ophthalmol 1999; 83: 1164-1167
- 48 Dirani A, Chelala E, Fadlallah A. et al. Bilateral macular injury from a green laser pointer. Clin Ophthalmol 2013; 7: 2127-2130
- 49 Brown J, Hacker H, Schuschereba ST. et al. Steroidal and nonsteroidal antiinflammatory medications can improve photoreceptor survival after laser retinal photocoagulation. Ophthalmology 2007; 114: 1876-1883