Subscribe to RSS
DOI: 10.1055/a-1273-3159
Brown-Algae Polysaccharides as Active Constituents against Nonalcoholic Fatty Liver Disease
Supported by: Università degli Studi di Genova
Abstract
Nonalcoholic fatty liver disease is a metabolic disorder characterized by lipid overloading in hepatocytes that can progress pathogenically and even end in hepatocellular carcinoma. Nonalcoholic fatty liver disease pharmacological treatment is still limited by unwanted side effects, whereas the use of food components with therapeutic potential is advisable. The culinary use of marine algae is traditional for some populations and reviving worldwide, with promising health outcomes due to the large number of bioactive compounds found in seaweeds. The present review focuses on brown-algae polysaccharides, particularly fucoidan, alginate, and laminarin, and summarizes the experimental evidence of their potential effects against nonalcoholic fatty liver disease onset and progression. In vitro and in vivo studies demonstrate that brown-algae polysaccharides exert beneficial actions on satiety feeling, caloric intake, fat absorption, and modulation of the gut microbiota, which could account for indirect effects on energy and lipid homeostasis, thus diminishing the fat overload in the liver. Specific effects against nonalcoholic fatty liver disease pathogenesis and worsening are also described and sustained by the antioxidant, anti-inflammatory, and antisteatotic properties of brown-algae polysaccharides. Further studies are required to clarify the mechanism of action of brown-algae polysaccharides on liver cells, to determine the composition and bioavailability of brown-algae polysaccharides present in different algal sources and to probe the clinical availability of these compounds in the form of algal foods, food supplements, and regulated therapeutics.
Key words
brown algae - polysaccharides - fucoidan - alginate - laminarin - nonalcoholic fatty liver diseasePublication History
Received: 26 June 2020
Accepted after revision: 28 September 2020
Article published online:
03 November 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 El Gamal AA. Biological importance of marine algae. Saudi Pharm J 2010; 18: 1-25 doi:10.1016/j.jsps.2009.12.001
- 2 Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 2017; 29: 949-982 doi:10.1007/s10811-016-0974-5
- 3 Xu SY, Huang X, Cheong KL. Recent advances in marine algae polysaccharides: isolation, structure, and activities. Mar Drugs 2017; 15: 388 doi:10.3390/md15120388
- 4 Dietrich P, Hellerbrand C. Nonalcoholic fatty liver disease, obesity, and the metabolic syndrome. Best Pract Res Clin Gastroenterol 2014; 28: 637-653 doi:10.1016/j.bpg.2014.07.008
- 5 Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of nonalcoholic fatty liver disease (NAFLD). Metabolism 2016; 65: 1038-1048 doi:10.1016/j.metabol.2015.12.012
- 6 Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24: 908-922 doi:10.1038/s41591-018-0104-9
- 7 Ucar F, Sezer S, Erdogan S, Akyol S, Armutcu F, Akyol O. The relationship between oxidative stress and nonalcoholic fatty liver disease: its effects on the development of nonalcoholic steatohepatitis. Redox Rep 2013; 18: 127-133 doi:10.1179/1351000213Y.0000000050
- 8 Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, Federico A, Persico M. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev 2018; 2018: 9547613 doi:10.1155/2018/9547613
- 9 Kazankov K, Jørgensen SMD, Thomsen KL, Møller HJ, Vilstrup H, George J, Schuppan D, Grønbæk H. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 2019; 16: 145-159 doi:10.1038/s41575-018-0082-x
- 10 Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough AJ, Forlani G, Melchionda N. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 1999; 107: 450-455 doi:10.1016/S0002-9343(99)00271-5
- 11 Kitade H, Chen G, Ni Y, Ota T. Nonalcoholic fatty liver disease and insulin resistance: new insights and potential new treatments. Nutrients 2017; 9: 387 doi:10.3390/nu9040387
- 12 Paolella G, Mandato C, Pierri L, Poeta M, Di Stasi M, Vajro P. Gut-liver axis and probiotics: their role in nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20: 15518-15531 doi:10.3748/wjg.v20.i42.15518
- 13 Kirpich IA, Marsano LS, McClain CJ. Gut-liver axis, nutrition, and nonalcoholic fatty liver disease. Clin Biochem 2015; 48: 923-930 doi:10.1016/j.clinbiochem.2015.06.023
- 14 Cornejo-Pareja I, Muñoz-Garach A, Clemente-Postigo M, Tinahones FJ. Importance of gut microbiota in obesity. Eur J Clin Nutr 2019; 72: 26-37 doi:10.1038/s41430-018-0306-8
- 15 Cussotto S, Sandhu KV, Dinan TG, Cryan JF. The neuroendocrinology of the microbiota-gut-brain axis: a behavioural perspective. Front Neuroendocrinol 2018; 51: 80-101 doi:10.1016/j.yfrne.2018.04.002
- 16 Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101: 15718-15723 doi:10.1073/pnas.0407076101
- 17 Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, Martin P, Philippe C, Walker F, Bado A, Perlemuter G, Cassard-Doulcier AM, Gérard P. Intestinal microbiota determines development of nonalcoholic fatty liver disease in mice. Gut 2013; 62: 1787-1794 doi:10.1136/gutjnl-2012-303816
- 18 Leoni S, Tovoli F, Napoli L, Serio I, Ferri S, Bolondi L. Current guidelines for the management of nonalcoholic fatty liver disease: A systematic review with comparative analysis. World J Gastroenterol 2018; 24: 3361-3373 doi:10.3748/wjg.v24.i30.3361
- 19 Johansson K, Neovius K, DeSantis SM, Rössner S, Neovius M. Discontinuation due to adverse events in randomized trials of orlistat, sibutramine and rimonabant: a meta-analysis. Obes Rev 2009; 10: 564-575 doi:10.1111/j.1467-789X.2009.00581.x
- 20 Haukeland JW, Konopski Z, Eggesbø HB, von Volkmann HL, Raschpichler G, Bjøro K, Haaland T, Løberg EM, Birkeland K. Metformin in patients with nonalcoholic fatty liver disease: a randomized, controlled trial. Scand J Gastroenterol 2009; 44: 853-860 doi:10.1080/00365520902845268
- 21 Choudhary NS, Kumar N, Duseja A. Peroxisome proliferator-activated receptors and their agonists in nonalcoholic fatty liver disease. J Clin Exp Hepatol 2019; 9: 731-739 doi:10.1016/j.jceh.2019.06.004
- 22 Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, Neuschwander-Tetri BA, Lavine JE, Tonascia J, Unalp A, Van Natta M, Clark J, Brunt EM, Kleiner DE, Hoofnagle JH, Robuck PR. NASH CRN. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362: 1675-1685 doi:10.1056/NEJMoa0907929
- 23 Gerss J, Köpcke W. The questionable association of vitamin E supplementation and mortality–inconsistent results of different meta-analytic approaches. Cell Mol Biol 2009; 55 (Suppl.) OL1111-OL1120
- 24 European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO clinical practice guidelines for the management of nonalcoholic fatty liver disease. J Hepatol 2016; 64: 1388-1402 doi:10.1016/j.jhep.2015.11.004
- 25 Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol 2018; 53: 362-376 doi:10.1007/s00535-017-1415-1
- 26 Meroni M, Longo M, Dongiovanni P. The role of probiotics in nonalcoholic fatty liver disease: a new insight into therapeutic strategies. Nutrients 2019; 11: 2642 doi:10.3390/nu11112642
- 27 Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67: 328-357 doi:10.1002/hep.29367
- 28 Singh S, Osna NA, Kharbanda KK. Treatment options for alcoholic and nonalcoholic fatty liver disease: a review. World J Gastroenterol 2017; 23: 6549-6570 doi:10.3748/wjg.v23.i36.6549
- 29 Baselga-Escudero L, Souza-Mello V, Pascual-Serrano A, Rachid T, Voci A, Demori I, Grasselli E. Beneficial effects of the Mediterranean spices and aromas on nonalcoholic fatty liver disease. Trends Food Sci Technol 2017; 61: 141-159 doi:10.1016/j.tifs.2016.11.019
- 30 Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol 2017; 67: 829-846 doi:10.1016/j.jhep.2017.05.016
- 31 Silberfeld T, Leigh JW, Verbruggen H, Cruaud C, de Reviers B, Rousseau F. A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): investigating the evolutionary nature of the brown algal crown radiation. Mol Phylogenet Evol 2010; 56: 659-674 doi:10.1016/j.ympev.2010.04.020
- 32 Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges. Carbohydr Polym 2017; 175: 395-408 doi:10.1016/j.carbpol.2017.07.082
- 33 Aquino RS, Grativol C, Mourão PAS. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. PLoS One 2011; 6: e18862 doi:10.1371/journal.pone.0018862
- 34 Popper ZA, Michel G, Hervé C, Domozych DS, Willats WGT, Tuohy MG, Kloareg B, Stengel DB. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 2011; 62: 567-590 doi:10.1146/annurev-arplant-042110-103809
- 35 Wan-Loy C, Siew-Moi P. Marine algae as a potential source for anti-obesity agents. Mar Drugs 2016; 14: 222 doi:10.3390/md14120222
- 36 Shang Q, Songa G, Zhanga M, Shia J, Xua C, Hao J, Li G, Yu G. Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice. J Funct Foods 2017; 28: 138-146 doi:10.1016/j.jff.2016.11.002
- 37 Fernando IPS, Nah JW, Jeon YJ. Potential anti-inflammatory natural products from marine algae. Environ Toxicol Pharmacol 2016; 48: 22-30 doi:10.1016/j.etap.2016.09.023
- 38 Patil NP, Le V, Sligar AD, Mei L, Chavarria D, Yang EY, Baker AB. Algal polysaccharides as therapeutic agents for atherosclerosis. Front Cardiovasc Med 2018; 5: 153 doi:10.3389/fcvm.2018.00153
- 39 Pomin VH. Fucanomics and galactanomics: marine distribution, medicinal impact, conceptions, and challenges. Mar Drugs 2012; 10: 793-811 doi:10.3390/md10040793
- 40 Haddad M, Zein S, Shahrour H, Hamadeh K, Karaki N, Kanaan H. Antioxidant activity of water-soluble polysaccharide extracted from Eucalyptus cultivated in Lebanon. Asian Pac J Trop Biomed 2017; 2: 157-160 doi:10.1016/j.apjtb.2016.11.024
- 41 Fitton JH. Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 2011; 9: 1731-1760 doi:10.3390/md9101731
- 42 Li B, Lu F, Wei X, Zhao R. Fucoidan: structure and bioactivity. Molecules 2008; 13: 1671-1695 doi:10.3390/molecules13081671
- 43 Fitton JH, Stringer DN, Karpiniec SS. Therapies from fucoidan: an update. Mar Drugs 2015; 13: 5920-5946 doi:10.3390/md13095920
- 44 Nagamine T, Nakazato K, Tomioka S, Iha M, Nakajima K. Intestinal absorption of fucoidan extracted from the brown seaweed, Cladosiphon okamuranus . Mar Drugs 2014; 13: 48-64 doi:10.3390/md13010048
- 45 Grasselli E, Canesi L, Portincasa P, Voci A, Vergani L, Demori I. Models of nonalcoholic fatty liver disease and potential translational value: the effects of 3,5-l-diiodothyronine. Ann Hepatol 2017; 16: 707-719 doi:10.5604/01.3001.0010.2713
- 46 Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 2012; 18: 2300-2308 doi:10.3748/wjg.v18.i19.2300
- 47 Heeba GH, Morsy MA. Fucoidan ameliorates steatohepatitis and insulin resistance by suppressing oxidative stress and inflammatory cytokines in experimental nonalcoholic fatty liver disease. Environ Toxicol Pharmacol 2015; 40: 907-914 doi:10.1016/j.etap.2015.10.003
- 48 Yokota T, Nomura K, Nagashima M, Kamimura N. Fucoidan alleviates high-fat diet- induced dyslipidemia and atherosclerosis in apoeshl mice deficient in apolipoprotein E expression. J Nutr Biochem 2016; 32: 46-54 doi:10.1016/j.jnutbio.2016.01.011
- 49 Park J, Yeom M, Hahm DH. Fucoidan improves serum lipid levels and atherosclerosis through hepatic SREBP-2-mediated regulation. J Pharmacol Sci 2016; 131: 84-92 doi:10.1016/j.jphs.2016.03.007
- 50 Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444: 1022-1023 doi:10.1038/4441022a
- 51 Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013; 110: 9066-9071 doi:10.1073/pnas.1219451110
- 52 Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014; 63: 727-735 doi:10.1136/gutjnl-2012-303839
- 53 Zheng Y, Liu T, Wang Z, Xu Y, Zhang Q, Luo D. Low molecular weight fucoidan attenuates liver injury via SIRT1/AMPK/PGC1α axis in db/db mice. Int J Biol Macromol 2018; 112: 929-936 doi:10.1016/j.ijbiomac.2018.02.072
- 54 He S, Peng WB, Zhou HLT. Combination treatment of deep sea water and fucoidan attenuates high glucose-induced insulin-resistance in HepG2 hepatocytes. Mar Drugs 2018; 16: 48 doi:10.3390/md16020048
- 55 Szekalska M, Pucilowska A, Szymanska E, Ciosek P, Winnicka K. Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016; 2016: 7697031 doi:10.1155/2016/7697031
- 56 Kelishomi ZH, Goliaei B, Mahdavi H, Nikoofar A, Rahimi M, Moosavi-Movahedi AA, Mamashli F, Bigdeli B. Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food Chem 2016; 196: 897-902 doi:10.1016/j.foodchem.2015.09.091
- 57 Jensen MG, Pedersen C, Kristensen M, Frost G, Astrup A. Review: efficacy of alginate supplementation in relation to appetite regulation and metabolic risk factors: evidence from animal and human studies. Obes Rev 2013; 14: 129-144 doi:10.1111/j.1467-789X.2012.01056.x
- 58 Bliss ES, Whiteside E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity. Front Physiol 2018; 9: 900 doi:10.3389/fphys.2018.00900
- 59 Umu ÖCO, Frank JA, Fangel JU, Oostindjer M, da Silva CS, Bolhuis EJ, Bosch G, Willats WG, Pope PB, Diep DB. Resistant starch diet induces change in the swine microbiome and a predominance of beneficial bacterial populations. Microbiome 2015; 3: 1-15 doi:10.1186/s40168-015-0078-5
- 60 Kawauchi S, Horibe S, Sasaki N, Tanahashi T, Mizuno S, Hamaguchi T, Rikitake Y. Inhibitory effects of sodium alginate on hepatic steatosis in mice induced by a methionine- and choline-deficient diet. Mar Drugs 2019; 17: 104 doi:10.3390/md17020104
- 61 Miyazaki T, Shirakami T, Kubota M, Ideta T, Kochi T, Sakai H, Tanaka T, Moriwaki H, Shimizu M. Sodium alginate prevents progression of nonalcoholic steatohepatitis and liver carcinogenesis in obese and diabetic mice. Oncotarget 2016; 9: 10448-10458 doi:10.18632/oncotarget.7249
- 62 Kadam SU, Tiwari BK, OʼDonnell CP. Extraction, structure and biofunctional activities of laminarin from brown algae. Int J Food Sci Tech 2014; 50: 24-31 doi:10.1111/ijfs.12692
- 63 Kadam SU, OʼDonnell CP, Rai DK, Hossain MB, Burgess CM, Walsh D, Tiwari BK. Laminarin from irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: ultrasound assisted extraction, characterization and bioactivity. Mar Drugs 2015; 13: 4270-4280 doi:10.3390/md13074270
- 64 Nguyen SG, Kim J, Guevarra RB, Lee JH, Kim E, Kim SI, Unno T. Laminarin favorably modulates gut microbiota in mice fed a high-fat diet. Food Funct 2016; 7: 4193-4201 doi:10.1039/c6fo00929h
- 65 Yang L, Wang L, Zhu C, Wu J, Yuan Y, Yu L, Xu Y, Xu J, Wang T, Liao Z, Wang S, Zhu X, Gao P, Zhang Y, Wang X, Jiang Q, Shu G. Laminarin counteracts diet-induced obesity associated with glucagon-like peptide-1 secretion. Oncotarget 2017; 8: 99470-99481 doi:10.18632/oncotarget.19957
- 66 Neyrinck AM, Mouson A, Delzenne NM. Dietary supplementation with laminarin, a fermentable marine beta (1–3) glucan, protects against hepatotoxicity induced by LPS in rat by modulating immune response in the hepatic tissue. Int Immunopharmacol 2007; 5: 1497-1506 doi:10.1016/j.intimp.2007.06.011
- 67 Tian L, Li CM, Li YF, Huang TM, Chao NX, Luo GR, Mo FR. Laminarin from seaweed (Laminaria japonica) inhibits hepatocellular carcinoma through upregulating senescence marker protein-30. Cancer Biother Radio 2020; 35: 277-283 doi:10.1089/cbr.2019.3179
- 68 Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15: 11-20 doi:10.1038/nrgastro.2017.109
- 69 Skriptsova AV, Shevchenko NM, Zvyagintseva TN, Imbs TI. Monthly changes in the content and monosaccharide composition of fucoidan from Undaria pinnatifida (Laminariales, Phaeophyta). J Appl Phycol 2010; 22: 79-86 doi:10.1007/s10811-009-9438-5
- 70 Mansour MB, Balti R, Yacoubi L, Ollivier V, Chaubet F, Maaroufi RM. Primary structure and anticoagulant activity of fucoidan from the sea cucumber Holothuria polii. Int J Biol Macromol 2019; 121: 1145-1153 doi:10.1016/j.ijbiomac.2018.10.129
- 71 Sensoy I. A review on the relationship between food structure, processing, and bioavailability. Crit Rev Food Sci Nutr 2014; 54: 902-909 doi:10.1080/10408398.2011.619016
- 72 Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010; 464: 908 doi:10.1038/nature08937