Rofo 2021; 193(03): 262-275
DOI: 10.1055/a-1288-1209
Review

Chondrogenic Bone Tumors: The Importance of Imaging Characteristics

Article in several languages: English | deutsch
Hannes Engel
1   Department of Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
,
Georg W. Herget
2   Department of Orthopaedics and Traumatology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
,
Hannah Füllgraf
3   Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
,
Reto Sutter
4   Department of Radiology, Balgrist University Hospital, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
,
Matthias Benndorf
1   Department of Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
,
Fabian Bamberg
1   Department of Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
,
1   Department of Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
› Author Affiliations
Supported by: Berta-Ottenstein-Programme for Advanced Clinician Scientists, Faculty of Medicine, University of Freiburg (Grant to P.M.J.)

Abstract

Background Chondrogenic tumors are the most frequent primary bone tumors. Malignant chondrogenic tumors represent about one quarter of malignant bone tumors. Benign chondrogenic bone tumors are frequent incidental findings at imaging. Radiological parameters may be helpful for identification, characterization, and differential diagnosis.

Methods Systematic PubMed literature research. Identification and review of studies analyzing and describing imaging characteristics of chondrogenic bone tumors.

Results and conclusions The 2020 World Health Organization (WHO) classification system differentiates between benign, intermediate (locally aggressive or rarely metastasizing), and malignant chondrogenic tumors. On imaging, typical findings of differentiated chondrogenic tumors are lobulated patterns with a high signal on T2-weighted magnetic resonance imaging (MRI) and ring- and arc-like calcifications on conventional radiography and computed tomography (CT). Depending on the entity, the prevalence of this chondrogenic pattern differs. While high grade tumors may be identified due to aggressive imaging patterns, the differentiation between benign and intermediate grade chondrogenic tumors is challenging, even in an interdisciplinary approach.

Key Points:

  • The WHO defines benign, intermediate, and malignant chondrogenic bone tumors

  • Frequent benign tumors: osteochondroma and enchondroma; Frequent malignant tumor: conventional chondrosarcoma

  • Differentiation between enchondroma versus low-grade chondrosarcoma is challenging for radiologists and pathologists

  • Pain, deep scalloping, cortical destruction, bone expansion, soft tissue component: favor chondrosarcoma

  • Potential malignant transformation of osteochondroma: progression after skeletal maturity, cartilage cap thickness (> 2 cm adult; > 3 cm child)

  • Potentially helpful advanced imaging methods: Dynamic MRI, texture analysis, FDG-PET/CT

Citation Format

  • Engel H, Herget GW, Füllgraf H et al. Chondrogenic Bone Tumors: The Importance of Imaging Characteristics. Fortschr Röntgenstr 2021; 193: 262 – 274



Publication History

Received: 14 May 2020

Accepted: 09 September 2020

Article published online:
05 November 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Uhl M, Herget G, Kurz P. Cartilage tumors: Pathology and radiomorphology. Radiologe 2016; 56: 476-488 . doi:10.1007/s00117-016-0112-z
  • 2 Lodwick GS. A probabilistic approach to the diagnosis of bone tumors. Radiol Clin North Am 1965; 3: 487-497
  • 3 Murphey MD, Walker EA, Wilson AJ. et al From the archives of the AFIP: imaging of primary chondrosarcoma: radiologic-pathologic correlation. Radiographics 2003; 23: 1245-1278 . doi:10.1148/rg.235035134
  • 4 Lalam R, Bloem JL, Noebauer-Huhmann IM. et al ESSR Consensus Document for Detection, Characterization, and Referral Pathway for Tumors and Tumorlike Lesions of Bone. Semin Musculoskelet Radiol 2017; 21: 630-647 . doi:10.1055/s-0037-1606130
  • 5 Aoki J, Sone S, Fujioka F. et al MR of enchondroma and chondrosarcoma: rings and arcs of Gd-DTPA enhancement. J Comput Assist Tomogr 1991; 15: 1011-1016 . doi:10.1097/00004728-199111000-00021
  • 6 Board WCoTE. Soft Tissue and Bone Tumours WHO Classification of Tumours. 2020 5th Edition, Volume 3.
  • 7 Doyle LA. Sarcoma classification: an update based on the 2013 World Health Organization Classification of Tumors of Soft Tissue and Bone. Cancer 2014; 120: 1763-1774 . doi:10.1002/cncr.28657
  • 8 Amary F, Perez-Casanova L, Ye H. et al Synovial chondromatosis and soft tissue chondroma: extraosseous cartilaginous tumor defined by FN1 gene rearrangement. Mod Pathol 2019; 32: 1762-1771 . doi:10.1038/s41379-019-0315-8
  • 9 Fletcher C. World Health Organization, International Agency for Research on Cancer (Hrsg). WHO classification of tumours of soft tissue and bone. Lyon: IARC Press; 2013 4th ed..
  • 10 Jundt G. Updates to the WHO classification of bone tumours. Pathologe 2018; 39: 107-116 . doi:10.1007/s00292-017-0396-4
  • 11 Bus MPA, Campanacci DA, Albergo JI. et al Conventional Primary Central Chondrosarcoma of the Pelvis: Prognostic Factors and Outcome of Surgical Treatment in 162 Patients. J Bone Joint Surg Am 2018; 100: 316-325 . doi:10.2106/JBJS.17.00105
  • 12 van Praag Veroniek VM, Rueten-Budde AJ, Ho V. et al Incidence, outcomes and prognostic factors during 25 years of treatment of chondrosarcomas. Surg Oncol 2018; 27: 402-408 . doi:10.1016/j.suronc.2018.05.009
  • 13 Murphey MD, Choi JJ, Kransdorf MJ. et al Imaging of osteochondroma: variants and complications with radiologic-pathologic correlation. Radiographics 2000; 20: 1407-1434 . doi:10.1148/radiographics.20.5.g00se171407
  • 14 Herget GW, Strohm P, Rottenburger C. et al Insights into Enchondroma, Enchondromatosis and the risk of secondary Chondrosarcoma. Review of the literature with an emphasis on the clinical behaviour, radiology, malignant transformation and the follow up. Neoplasma 2014; 61: 365-378 . doi:10.4149/neo_2014_046
  • 15 Pannier S, Legeai-Mallet L. Hereditary multiple exostoses and enchondromatosis. Best Pract Res Clin Rheumatol 2008; 22: 45-54 . doi:10.1016/j.berh.2007.12.004
  • 16 Biermann JS. Common benign lesions of bone in children and adolescents. J Pediatr Orthop 2002; 22: 268-273
  • 17 Bernard SA, Murphey MD, Flemming DJ. et al Improved differentiation of benign osteochondromas from secondary chondrosarcomas with standardized measurement of cartilage cap at CT and MR imaging. Radiology 2010; 255: 857-865 . doi:10.1148/radiol.10082120
  • 18 Imai K, Suga Y, Nagatsuka Y. et al Pneumothorax caused by costal exostosis. Ann Thorac Cardiovasc Surg 2014; 20: 161-164 . doi:10.5761/atcs.cr.12.01955
  • 19 Herget GW, Kontny U, Saueressig U. et al Osteochondroma and multiple osteochondromas: recommendations on the diagnostics and follow-up with special consideration to the occurrence of secondary chondrosarcoma. Radiologe 2013; 53: 1125-1136 . doi:10.1007/s00117-013-2571-9
  • 20 Jurik AG, Jorgensen PH, Mortensen MM. Whole-body MRI in assessing malignant transformation in multiple hereditary exostoses and enchondromatosis: audit results and literature review. Skeletal Radiol 2020; 49: 115-124 . doi:10.1007/s00256-019-03268-z
  • 21 Lee K, Park HY, Kim KW. et al Advances in whole body MRI for musculoskeletal imaging: Diffusion-weighted imaging. J Clin Orthop Trauma 2019; 10: 680-686 . doi:10.1016/j.jcot.2019.05.018
  • 22 Roessner A, Smolle M, Schoeder V. et al Cartilage tumors: morphology, genetics, and current aspects of target therapy. Pathologe 2020; 41: 143-152 . doi:10.1007/s00292-020-00752-5
  • 23 Hakim DN, Pelly T, Kulendran M. et al Benign tumours of the bone: A review. J Bone Oncol 2015; 4: 37-41 . doi:10.1016/j.jbo.2015.02.001
  • 24 Walden MJ, Murphey MD, Vidal JA. Incidental enchondromas of the knee. Am J Roentgenol 2008; 190: 1611-1615 . doi:10.2214/AJR.07.2796
  • 25 Davies AM, Shah A, Shah R. et al Are the tubular bones of the hand really the commonest site for an enchondroma?. Clin Radiol 2020; DOI: 10.1016/j.crad.2020.02.004.
  • 26 Silve C, Juppner H. Ollier disease. Orphanet J Rare Dis 2006; 1: 37 . doi:10.1186/1750-1172-1-37
  • 27 Altay M, Bayrakci K, Yildiz Y. et al Secondary chondrosarcoma in cartilage bone tumors: report of 32 patients. J Orthop Sci 2007; 12: 415-423 . doi:10.1007/s00776-007-1152-z
  • 28 Verdegaal SH, Bovee JV, Pansuriya TC. et al Incidence, predictive factors, and prognosis of chondrosarcoma in patients with Ollier disease and Maffucci syndrome: an international multicenter study of 161 patients. Oncologist 2011; 16: 1771-1779 . doi:10.1634/theoncologist.2011-0200
  • 29 Delling G, Jobke B, Burisch S. et al Cartilage tumors. Classification, conditions for biopsy and histologic characteristics. Orthopade 2005; 34: 1267-1281 ; quiz 1281-1262. doi:10.1007/s00132-005-0886-6
  • 30 Eefting D, Schrage YM, Geirnaerdt MJ. et al Assessment of interobserver variability and histologic parameters to improve reliability in classification and grading of central cartilaginous tumors. Am J Surg Pathol 2009; 33: 50-57 . doi:10.1097/PAS.0b013e31817eec2b
  • 31 Skeletal Lesions Interobserver Correlation among Expert Diagnosticians Study G. Reliability of histopathologic and radiologic grading of cartilaginous neoplasms in long bones. J Bone Joint Surg Am 2007; 89: 2113-2123 . doi:10.2106/JBJS.F.01530
  • 32 Logie CI, Walker EA, Forsberg JA. et al Chondrosarcoma: A Diagnostic Imager’s Guide to Decision Making and Patient Management. Semin Musculoskelet Radiol 2013; 17: 101-115 . doi:10.1055/s-0033-1342967
  • 33 Crim J, Schmidt R, Layfield L. et al Can imaging criteria distinguish enchondroma from grade 1 chondrosarcoma?. Eur J Radiol 2015; 84: 2222-2230 . doi:10.1016/j.ejrad.2015.06.033
  • 34 Ferrer-Santacreu EM, Ortiz-Cruz EJ, Gonzalez-Lopez JM. et al Enchondroma versus Low-Grade Chondrosarcoma in Appendicular Skeleton: Clinical and Radiological Criteria. J Oncol 2012; 2012: 437958 . doi:10.1155/2012/437958
  • 35 Choi BB, Jee WH, Sunwoo HJ. et al MR differentiation of low-grade chondrosarcoma from enchondroma. Clin Imaging 2013; 37: 542-547 . doi:10.1016/j.clinimag.2012.08.006
  • 36 Douis H, Singh L, Saifuddin A. MRI differentiation of low-grade from high-grade appendicular chondrosarcoma. Eur Radiol 2014; 24: 232-240 . doi:10.1007/s00330-013-3003-y
  • 37 Murphey MD, Flemming DJ, Boyea SR. et al Enchondroma versus chondrosarcoma in the appendicular skeleton: differentiating features. Radiographics 1998; 18: 1213-1237 ; quiz 1244-1215. doi:10.1148/radiographics.18.5.9747616
  • 38 Douis H, Parry M, Vaiyapuri S. et al What are the differentiating clinical and MRI-features of enchondromas from low-grade chondrosarcomas?. Eur Radiol 2018; 28: 398-409 . doi:10.1007/s00330-017-4947-0
  • 39 Bui KL, Ilaslan H, Bauer TW. et al Cortical scalloping and cortical penetration by small eccentric chondroid lesions in the long tubular bones: not a sign of malignancy?. Skeletal Radiol 2009; 38: 791-796 . doi:10.1007/s00256-009-0675-0
  • 40 Davies AM, Patel A, James SL. et al A retrospective validation of an imaging protocol for the management of solitary central cartilage tumours of the proximal humerus and around the knee. Clin Radiol 2019; 74: 962-971 . doi:10.1016/j.crad.2019.08.017
  • 41 Douis H, Jeys L, Grimer R. et al Is there a role for diffusion-weighted MRI (DWI) in the diagnosis of central cartilage tumors?. Skeletal Radiol 2015; 44: 963-969 . doi:10.1007/s00256-015-2123-7
  • 42 Geirnaerdt MJ, Hogendoorn PC, Bloem JL. et al Cartilaginous tumors: fast contrast-enhanced MR imaging. Radiology 2000; 214: 539-546 . doi:10.1148/radiology.214.2.r00fe12539
  • 43 De Coninck T, Jans L, Sys G. et al Dynamic contrast-enhanced MR imaging for differentiation between enchondroma and chondrosarcoma. Eur Radiol 2013; 23: 3140-3152 . doi:10.1007/s00330-013-2913-z
  • 44 Lisson CS, Lisson CG, Flosdorf K. et al Diagnostic value of MRI-based 3D texture analysis for tissue characterisation and discrimination of low-grade chondrosarcoma from enchondroma: a pilot study. Eur Radiol 2018; 28: 468-477 . doi:10.1007/s00330-017-5014-6
  • 45 Fritz B, Muller DA, Sutter R. et al Magnetic Resonance Imaging-Based Grading of Cartilaginous Bone Tumors: Added Value of Quantitative Texture Analysis. Invest Radiol 2018; 53: 663-672 . doi:10.1097/RLI.0000000000000486
  • 46 Subhawong TK, Winn A, Shemesh SS. et al F-18 FDG PET differentiation of benign from malignant chondroid neoplasms: a systematic review of the literature. Skeletal Radiol 2017; 46: 1233-1239 . doi:10.1007/s00256-017-2685-7
  • 47 Vadi SK, Mittal BR, Gorla AKR. et al 18F-FDG PET/CT in Diagnostic and Prognostic Evaluation of Patients With Suspected Recurrence of Chondrosarcoma. Clin Nucl Med 2018; 43: 87-93 . doi:10.1097/RLU.0000000000001947
  • 48 Annovazzi A, Anelli V, Zoccali C. et al (18)F-FDG PET/CT in the evaluation of cartilaginous bone neoplasms: the added value of tumor grading. Ann Nucl Med 2019; 33: 813-821 . doi:10.1007/s12149-019-01392-3
  • 49 Jundt G, Baumhoer D. Cartilage tumors of the skeleton. Pathologe 2008; 29 (Suppl. 02) 223-231 . doi:10.1007/s00292-008-1025-z
  • 50 Afonso PD, Isaac A, Villagran JM. Chondroid Tumors as Incidental Findings and Differential Diagnosis between Enchondromas and Low-grade Chondrosarcomas. Semin Musculoskelet Radiol 2019; 23: 3-18 . doi:10.1055/s-0038-1675550
  • 51 Golden T, Siordia JA. Osteochondromyxoma: Review of a rare carney complex criterion. J Bone Oncol 2016; 5: 194-197 . doi:10.1016/j.jbo.2016.07.002
  • 52 Baek HJ, Lee SJ, Cho KH. et al Subungual tumors: clinicopathologic correlation with US and MR imaging findings. Radiographics 2010; 30: 1621-1636 . doi:10.1148/rg.306105514
  • 53 DaCambra MP, Gupta SK, Ferri-de-Barros F. Subungual exostosis of the toes: a systematic review. Clin Orthop Relat Res 2014; 472: 1251-1259 . doi:10.1007/s11999-013-3345-4
  • 54 Cocks M, Helmke E, Meyers CA. et al Bizarre parosteal osteochondromatous proliferation: 16 Cases with a focus on histologic variability. J Orthop 2018; 15: 138-142 . doi:10.1016/j.jor.2018.01.028
  • 55 Adler D, Aigner T, von Salis-Soglio G. et al Nora’s lesion. Discussion of a rare bone proliferation. Orthopade 2010; 39: 1065-1070 . doi:10.1007/s00132-010-1648-7
  • 56 Cappelle S, Pans S, Sciot R. Imaging features of chondromyxoid fibroma: report of 15 cases and literature review. Br J Radiol 2016; 89: 20160088 . doi:10.1259/bjr.20160088
  • 57 Meredith DM, Fletcher CDM, Jo VY. Chondromyxoid Fibroma Arising in Craniofacial Sites: A Clinicopathologic Analysis of 25 Cases. Am J Surg Pathol 2018; 42: 392-400 . doi:10.1097/PAS.0000000000001019
  • 58 Kim HS, Jee WH, Ryu KN. et al MRI of chondromyxoid fibroma. Acta Radiol 2011; 52: 875-880 . doi:10.1258/ar.2011.110180
  • 59 Gutierrez LB, Link TM, Horvai AE. et al Secondary aneurysmal bone cysts and associated primary lesions: imaging features of 49 cases. Clin Imaging 2020; 62: 23-32 . doi:10.1016/j.clinimag.2020.01.022
  • 60 Chen W, DiFrancesco LM. Chondroblastoma: An Update. Arch Pathol Lab Med 2017; 141: 867-871 . doi:10.5858/arpa.2016-0281-RS
  • 61 Jundt G, Baumhoer D. Chondroblastoma. Pathologe 2018; 39: 132-138 . doi:10.1007/s00292-017-0397-3
  • 62 Murphey MD, Vidal JA, Fanburg-Smith JC. et al Imaging of synovial chondromatosis with radiologic-pathologic correlation. Radiographics 2007; 27: 1465-1488 . doi:10.1148/rg.275075116
  • 63 Varma DG, Ayala AG, Carrasco CH. et al Chondrosarcoma: MR imaging with pathologic correlation. Radiographics 1992; 12: 687-704 . doi:10.1148/radiographics.12.4.1636034
  • 64 Yoo HJ, Hong SH, Choi JY. et al Differentiating high-grade from low-grade chondrosarcoma with MR imaging. Eur Radiol 2009; 19: 3008-3014 . doi:10.1007/s00330-009-1493-4