Subscribe to RSS
DOI: 10.1055/a-1289-6630
Intensivtherapie bei Adipositas: Too Big to Fail?
The Critically Ill Obese Patient: Too Big to Fail?Zusammenfassung
Pathophysiologische Besonderheiten und typische Begleiterkrankungen adipöser Patienten stellen Ärzte und Pflegepersonal auf Intensivtherapiestationen vor große Herausforderungen – und die Prävalenz dieser Patienten steigt. Dieser Beitrag vermittelt pathophysiologische Hintergründe sowie notwendiges Wissen über endotracheale Intubation, Anpassung der maschinellen Ventilation und die Lagerungsbehandlung bei kritisch kranken Adipösen.
Abstract
Worldwide, currently more than 1.9 billion adults are overweight, 650 million of them are obese. Hereby they pose a significant burden on the budget of the health system and on the workload of intensive care units. Mechanical ventilation of critically ill obese patients needs to take into account the characteristic pathologic alterations of their respiratory system. Setting the respirator also requires careful consideration. Cornerstones include judicious preoxygenation, selection of a tidal volume of 6 – 8 ml/kg ideal body weight, a level of positive end-expiratory pressure titrated to compensate for the reduced functional residual capacity and concurrently protect the lung from ventilator associated lung injury. In selected cases recruitment manoeuvres may be required. In light of the recently published ART study that showed an increased mortality and higher incidence of pneumothorax and barotrauma, these need to be performed carefully. Correctly positioning the critical obese is an unrenounceable asset of intensive care. Prone position in mechanically ventilated obese ARDS-patients has been proven to be life-saving. However, specifically the supine position and the Trendelenburg position need to consequently be avoided. Failure to do so may result in obesity supine death syndrome. Finally, latest research documented lower mortality rates in obese individuals who require intensive care. This represents another hard to explain obesity paradox.
-
Aktuell sind mehr als 650 Millionen erwachsene Menschen auf der Erde fettleibig.
-
ETI bei fettleibigen Patienten sind schwieriger als bei normalgewichtigen. Zudem sind die Rahmenbedingungen auf ITS ungünstiger als im Operationssaal.
-
Der Atemapparat des Fettleibigen ist durch herabgesetzte Compliance des Thorax und der Lungen und erhöhten IAP gekennzeichnet. Sämtliche Lungenvolumina sind reduziert, es besteht eine Neigung zur EFL und zu ausgeprägter Atelektasenbildung.
-
Die Lungen von Fettleibigen wachsen nicht mit, daher muss das VT auf der Grundlage des IBW berechnet werden.
-
Das PEEP-Niveau sollte individuell unter Berücksichtigung von pulmonalem Gasaustausch, Atemmechanik und Hämodynamik titriert werden.
-
RM, die mit plötzlichen Druckerhöhungen einhergehen, sollten mit großer Vorsicht durchgeführt werden. Vorher sollten ein Pneumothorax und hämodynamische Instabilität ausgeschlossen werden.
-
Flache Rückenlage und Trendelenburg-Lagerung sind für den Fettleibigen sehr gefährlich; auf diese Lagerungsformen sollte verzichtet werden.
-
Aktuelle Forschungsergebnisse weisen darauf hin, dass die Intensivtherapie kritisch kranker Fettleibiger mit niedrigeren Sterblichkeitsraten assoziiert ist als die von Normalgewichtigen: ein Adipositas-Paradoxon.
Schlüsselwörter
Adipositas - maschinelle Beatmung - Lagerung - Obesity Supine Death Syndrome - Adipositas-ParadoxonKey words
obesity - mechanical ventilation - positioning - obesity supine death syndrome - obesity paradoxPublication History
Article published online:
01 December 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Finkelstein EA, Khavjou OA, Thompson H. et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med 2012; 42: 563-570 doi:10.1016/j.amepre.2011.10.026
- 2 Wang T, Sun S, Huang S. The association of body mass index with difficult tracheal intubation management by direct laryngoscopy: a meta-analysis. BMC Anesthesiol 2018; 18: 79 doi:10.1186/s12871-018-0534-4
- 3 Higgs A, Cook TM, McGrath BA. et al. Airway management in the critically ill: the same, but different. Br J Anaesth 2016; 117 (Suppl. 01) i5-i9 doi:10.1093/bja/aew055
- 4 De Jong A, Molinari N, Terzi N. et al. Early identification of patients at risk for difficult intubation in the intensive care unit: development and validation of the MACOCHA score in a multicenter cohort study. Am J Respir Crit Care Med 2013; 187: 832-839 doi:10.1164/rccm.201210-1851OC
- 5 De Jong A, Rolle A, Molinari L. et al. Cardiac arrest and mortality related to intubation procedure in critically ill adult patients: a multicenter cohort study. Crit Care Med 2018; 46: 532-539 doi:10.1097/CCM.0000000000002925
- 6 Petrini F, Di Giacinto I, Cataldo R. et al. Perioperative and periprocedural airway management and respiratory safety of the obese patient: 2016 SIAARTI Consensus. Minerva Anestesiol 2016; 82: 1314-1335
- 7 Doyle AJ, Stolady D, Mariyaselvam M. et al. Preoxygenation and apneic oxygenation using Transnasal Humidified Rapid-Insufflation Ventilatory Exchange for emergency intubation. J Crit Care 2016; 36: 8-12 doi:10.1016/j.jcrc.2016.06.011
- 8 MacIntyre NR. Mechanical ventilation in the context of a bag-in-box respiratory system. Crit Care Med 2012; 40: 1988-1989 doi:10.1097/CCM.0b013e3182515092
- 9 Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342: 1301-1308 doi:10.1056/NEJM200005043421801
- 10 Bellani G, Laffey JG, Pham T. et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315: 788-800 doi:10.1001/jama.2016.0291
- 11 Guivarch E, Voiriot G, Rouzé A. et al. Pulmonary effects of adjusting tidal volume to actual or ideal body weight in ventilated obese mice. Sci Rep 2018; 8: 6439 doi:10.1038/s41598-018-24615-5
- 12 Eichacker PQ, Gerstenberger EP, Banks SM. et al. Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 2002; 166: 1515-1516 doi:10.1164/rccm.200208-956OC
- 13 Dreyfuss D, Soler P, Basset G. et al. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988; 137: 1159-1164 doi:10.1164/ajrccm/137.5.1159
- 14 Nestler C, Simon P, Petroff D. et al. Individualized positive end-expiratory pressure in obese patients during general anaesthesia: a randomized controlled clinical trial using electrical impedance tomography. Br J Anaesth 2017; 119: 1194-1205 doi:10.1093/bja/aex192
- 15 Talmor D, Sarge T, Malhotra A. et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359: 2095-2104 doi:10.1056/NEJMoa0708638
- 16 Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators. Cavalcanti AB, Suzumura ÉA, Laranjeira LN. et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs. low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2017; 318: 1335-1345 doi:10.1001/jama.2017.14171
- 17 Chlif M, Keochkeriana D, Choquet D. et al. Effects of obesity on breathing pattern, ventilatory neural drive and mechanics. Respir Physiol Neurobiol 2009; 168: 198-202 doi:10.1016/j.resp.2009.06.012
- 18 De Jong A, Molinari N, Sebbane M. et al. Feasibility and effectiveness of prone position in morbidly obese patients with ARDS. A case-control clinical study. Chest 2013; 143: 1554-1561 doi:10.1378/chest.12-2115
- 19 Lemyze M, Guiot A, Mallat J. et al. The obesity supine death syndrome (OSDS). Obes Rev 2018; 19: 550-556 doi:10.1111/obr.12655
- 20 Zhao Y, Li Z, Yang T. et al. Is body mass index associated with outcomes of mechanically ventilated adult patients in intensive critical units? A systematic review and meta-analysis. PLoS One 2018; 13: e0198669 doi:10.1371/journal.pone.0198669