RSS-Feed abonnieren
DOI: 10.1055/a-1297-4717
In vivo Histology of the Cornea – from the “Rostock Cornea Module” to the “Rostock Electronic Slit Lamp” – a Clinical “Proof of Concept” Study
Artikel in mehreren Sprachen: English | deutschDedication
dedicated to Joachim Stave on his 80th birthday.
Abstract
Introduction Confocal in vivo microscopy is an established method in ophthalmology research. As it requires contact coupling and calibration of the instruments is suboptimal, this method has been only rarely used in clinical routine work. As a result of close collaboration between physicists, information scientists and ophthalmologists, confocal laser scanning microscopy (CLSM) of the eye has been developed in recent years and a prototype can now be used in patients. The present study evaluates possible clinical uses of this method.
Material and Methods The essential innovations in CLSM are (1) a newly designed coupling element with superficial adaptation to corneal curvature and (2) the use of a dual computerised piezo drive for rapid and precise focusing. In post-processing and after elastic imaging registration of the individual images parallel to the surface, it is also possible to produce sagittal sections resembling a split lamp and with resolution in the micrometer range. The concept was tested on enucleated pig bulbi and tested on normal volunteers and selected patients with diseases of the cornea.
Results Simultaneous imaging in planes parallel to the surface and in sagittal planes provided additional information that can help us to understand the processes of wound healing in all substructures of the cornea and the role of immune competent cells. Possible clinical uses were demonstrated in a volunteer with healthy eyes and several groups of patients (keratoconus after CXL, recurrent keratitis, status after PRK). These show that this new approach can be used in morphological studies at cellular level in any desired and appropriate test plane.
Conclusions It could be shown that this new concept of CLSM can be used clinically. It can provide valuable and novel information to both preclinical researchers and to ophthalmologists interested in corneal disease, e.g. density of Langerhans cells and epithelial stratification in ocular surface diseases.
Key words
Rostocker electronic slit lamp - confocal in vivo laser scanning microscopes - in vivo histology of the corneaPublikationsverlauf
Eingereicht: 02. Oktober 2020
Angenommen: 21. Oktober 2020
Artikel online veröffentlicht:
23. November 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1 Schmidt D. Carl Wilhelm von Zehender: Vater der Mikrochirurgie, erster Herausgeber der klinischen Monatsblätter für Augenheilkunde und Mitbegründer der Ophthalmologischen Gesellschaft Heidelberg. In: Krogmann F. Hrsg. Mitteilungen der Julius-Hirschberg-Gesellschaft zur Geschichte der Augenheilkunde. Würzburg: Königshausen & Neumann; 2001: 79-166
- 2 Gellrich MM, Schmidt D. Hrsg. Die Spaltlampe. Heidelberg: Kaden; 2011
- 3 Gullstrand A. Die Nernstspaltlampe in der ophthalmologischen Praxis. In: Gellrich MM, Schmidt D. Hrsg. Die Spaltlampe. Heidelberg: Kaden; 2011: 165-179
- 4 Vogt A. Lehrbuch und Atlas der Spaltlampenmikroskopie des lebenden Auges mit Anleitung und Methodik der Untersuchung. In: Gellrich MM, Schmidt D. Hrsg. Die Spaltlampe. Heidelberg: Kaden; 2011: 165-179
- 5 Minsky M. Microscopy Apparatus. US Patent 3,013,467, 1961
- 6 Minsky M. Memoir on inventing the confocal scanning microscope. Scanning 1988; 10: 128-138 doi:10.1002/sca.4950100403
- 7 Maurice DM. A scanning slit optical microscope. Invest Ophthalmol 1974; 13: 1033-1037
- 8 Koester CJ. Scanning mirror microscope with optical sectioning characteristics: applications in ophthalmology. Appl Opt 1980; 19: 1749-1757 doi:10.1364/AO.19.001749
- 9 Cavanagh HD, Jester JV, Essepian J. et al. Confocal microscopy of the living eye. CLAO J 1990; 16: 65-73
- 10 Masters BR, Thaer AA. Real-time scanning slit confocal microscopy of the in vivo human cornea. Appl Opt 1994; 33: 695-701 doi:10.1364/AO.33.000695
- 11 Guthoff RF, Zhivov A, Stachs O. In vivo confocal microscopy, an inner vision of the cornea – a major review. Clin Exp Ophthalmol 2009; 37: 100-117 doi:10.1111/j.1442-9071.2009.02016.x
- 12 Daas L, Viestenz A, Bischoff M. et al. Confocal microscopy for the diagnostics of fungal keratitis. Ophthalmologe 2016; 113: 767-771 doi:10.1007/s00347-015-0206-4
- 13 Daas L, Bischoff-Jung M, Viestenz A. et al. Confocal microscopy as an early relapse marker after keratoplasty due to Fusarium solani keratitis. Ophthalmologe 2017; 114: 66-69 doi:10.1007/s00347-016-0270-4
- 14 De Clerck EEB, Schouten JS, Berendschot TTJM. et al. New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review. Lancet Diabetes Endocrinol 2015; 3: 653-663 doi:10.1016/S2213-8587(15)00136-9
- 15 Bohn S, Sperlich K, Allgeier S. et al. Cellular in vivo 3D imaging of the cornea by confocal laser scanning microscopy. Biomed Opt Express 2018; 9: 2511-2525 doi:10.1364/BOE.9.002511
- 16 Beuerman RW, Laird JA, Kaufman SC. et al. Quantification of real-time confocal images of the human cornea. J Neurosci Methods 1994; 54: 197-203 doi:10.1016/0165-0270(94)90193-7
- 17 Cavanagh HD, Petroll WM, Jester JV. Confocal Microscopy. In: Krachmer JH, Mannis MJ, Holland EJ. eds. Cornea. Philadelphia: Elsevier Mosby; 2005: 283-297
- 18 Petroll WM, Robertson DM. In Vivo Confocal Microscopy of the Cornea: New Developments in Image Acquisition, Reconstruction, and Analysis Using the HRT-Rostock Corneal Module. Ocul Surf 2015; 13: 187-203 doi:10.1016/j.jtos.2015.05.002
- 19 Eckard A, Stave J, Guthoff RF. In vivo investigations of the corneal epithelium with the confocal Rostock Laser Scanning Microscope (RLSM). Cornea 2006; 25: 127-131 doi:10.1097/01.ico.0000170694.90455.f7
- 20 Hamrah P, Liu Y, Zhang Q. et al. The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci 2003; 44: 581-589 doi:10.1167/iovs.02-0838
- 21 Chinnery HR, Leong CM, Chen W. et al. TLR9 and TLR7/8 activation induces formation of keratic precipitates and giant macrophages in the mouse cornea. J Leukoc Biol 2015; 97: 103-110 doi:10.1189/jlb.3AB0414-216R
- 22 Chinnery HR, McMenamin PG, Dando SJ. Macrophage physiology in the eye. Pflugers Arch 2017; 469: 501-515 doi:10.1007/s00424-017-1947-5
- 23 Hovakimyan M, Falke K, Stahnke T. et al. Morphological analysis of quiescent and activated keratocytes: a review of ex vivo and in vivo findings. Curr Eye Res 2014; 39: 1129-1144 doi:10.3109/02713683.2014.902073
- 24 Hovakimyan M, Stachs O, Céline O. et al. Matrix-Based Regenerating Agent for Corneal Wound Healing After Collagen Cross-Linking. Cornea 2016; 35: 1638-1643 doi:10.1097/ICO.0000000000001047
- 25 Hahnel C, Somodi S, Weiss DG. et al. The keratocyte network of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy. Cornea 2000; 19: 185-193 doi:10.1097/00003226-200003000-00012
- 26 Stave J, Zinser G, Grümmer G. et al. [Modified Heidelberg Retinal Tomograph HRT. Initial results of in vivo presentation of corneal structures]. Ophthalmologe 2002; 99: 276-280 doi:10.1007/s003470100535
- 27 Dua HS, Faraj LA, Said DG. et al. Human corneal anatomy redefined: a novel pre-Descemetʼs layer (Duaʼs layer). Ophthalmology 2013; 120: 1778-1785 doi:10.1016/j.ophtha.2013.01.018