Klin Monbl Augenheilkd 2020; 237(12): 1430-1437
DOI: 10.1055/a-1298-8121
Experimentelle Studie

Künstliche Intelligenz, maschinelles Lernen und Intraokularlinsenberechnung

Article in several languages: English | deutsch
Achim Langenbucher
1   Institut für Experimentelle Ophthalmologie, Universität des Saarlandes, Homburg/Saar, Deutschland
,
Nóra Szentmáry
2   Dr. Rolf M. Schwiete-Zentrum für Limbusstammzellforschung und kongenitale Aniridie, Universität des Saarlandes, Saarbrücken, Deutschland
3   Klinik für Augenheilkunde, Semmelweis-Universität, Budapest, Ungarn
,
Jascha Wendelstein
4   Abteilung für Augenheilkunde und Optometrie, Johannes-Kepler-Universität Linz, Österreich
,
Peter Hoffmann
5   Augen- und Laserklinik Castrop-Rauxel, Deutschland
› Author Affiliations

Zusammenfassung

Hintergrund und Zielsetzung In den vergangenen Jahren wurden zunehmend Systeme der künstlichen Intelligenz in der Medizin etabliert, die Pathologien oder Erkrankungen erkennen und schwer zu erfassende Zusammenhänge zwischen Eingangsgrößen beschreiben sollen. Ziel der Studie ist es, anhand von biometrischen Messgrößen vor der Kataraktoperation die physikalische Position der Intraokularlinse nach der Operation mit Verfahren des maschinellen Lernens vorherzusagen.

Patienten und Methoden 249 Augen von Patienten, die sich zur elektiven Kataraktoperation an der Augenklinik Castrop-Rauxel vorstellten, wurden mit dem IOLMaster 700 (Carl Zeiss Meditec) und vor sowie nach der Operation mit dem Casia 2 (Tomey) untersucht. Aus den Effektgrößen Augenlänge, Hornhautdicke, interne Vorderkammertiefe, Linsendicke, mittlerer Hornhautradius und Hornhautdurchmesser wurde eine Auswahl von 17 Algorithmen des Maschinenlernens auf ihre Vorhersagequalität hin getestet für die Bestimmung der postoperativen internen Vorderkammertiefe (AQD_post) und der Lage des Linsenäquators relativ zum Hornhautscheitel (LEQ_post).

Ergebnisse Die 17 Modelle (4 Algorithmusfamilien) variierten im mittleren quadratischen/mittleren absoluten Vorhersagefehler zwischen 0,187/0,139 mm und 0,255/0,204 mm (AQD_post) und 0,183/0,135 mm und 0,253/0,206 mm (LEQ_post) bei einer Kreuzvalidierung (5-fold cross validation). Der Algorithmus mit der besten Performance war bei beiden Vorhersagen ein Gaussian Process Regression Model mit einem exponentiellen Kernel. Prüft man am gesamten Datensatz (ohne Aufteilung in Trainings- und Validierungsdaten) ein einfaches multiples lineares Regressionsmodell gegen den Algorithmus mit der besten Performance, so ergibt sich bei der Vorhersage von AQD_post/LEQ_post ein mittlerer quadratischer Vorhersagefehler von 0,188/0,187 mm gegenüber dem Gaussian Process Regression Model mit 0,166/0,159 mm.

Schlussfolgerungen In der Arbeit soll das Prinzip des überwachten Maschinenlernens in der Anwendung auf die Nachbildung der physikalisch gemessenen postoperativen axialen Position von Intraokularlinsen gezeigt werden. Bei den vorliegenden Daten ist der Gewinn durch die Verwendung von Algorithmen des maschinellen Lernens (bei den hier verwendeten Algorithmen) gegenüber einem multiplen linearen Regressionsansatz gering.



Publication History

Received: 11 September 2020

Accepted: 26 October 2020

Article published online:
23 November 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany