Nervenheilkunde 2021; 40(01/02): 13-26
DOI: 10.1055/a-1300-3619
Schwerpunkt

Neuronale Oszillationen als elektrophysiologischer Marker für Defizite der kognitiven Kontrolle bei psychischen Erkrankungen

Neural oscillations as electrophysiological marker for cognitive control deficits in mental diseases
Ingo Klaiber
1   Klinik für Psychiatrie und Psychotherapie III, Sektion für Kognitive Elektrophysiologie, Universitätsklinikum Ulm
,
Carlos Schönfeldt-Lecuona
2   Klinik für Psychiatrie und Psychotherapie III, Sektion für Neurostimulation, Universitätsklinikum Ulm
,
Markus Kiefer
1   Klinik für Psychiatrie und Psychotherapie III, Sektion für Kognitive Elektrophysiologie, Universitätsklinikum Ulm
› Author Affiliations

ZUSAMMENFASSUNG

Kognitive Kontrollprozesse sind wichtig, um eine Vielzahl an Alltagssituationen erfolgreich zu bewältigen. Bei psychischen Erkrankungen wie Schizophrenie oder Depression wurden Defizite in diesen Kontrollfunktionen beschrieben, wobei das kognitive Syndrom bei Depression in der klinischen Praxis häufig weniger Beachtung findet. In den vergangenen Jahren wurde den neuronalen Oszillationen als Korrelat für kognitive Kontrollleistungen vermehrt Aufmerksamkeit gewidmet und deren Veränderungen bei psychischen Erkrankungen untersucht. Die oszillatorische elektrische Hirnaktivität, also rhythmische Veränderungen neuronaler Aktivität, kann mit dem Elektroenzephalogramm (EEG) gemessen werden. In der Forschung kristallisierte sich dabei die oszillatorische Aktivität im Theta-Frequenzband als neuronales Korrelat von kognitiven Kontrollfunktionen und als wichtig für neuronale Kommunikation heraus. Befunde zeigen, dass Patienten mit Schizophrenie während der Lösung kognitiver Konflikte pathologische Veränderungen in diesem Frequenzband aufweisen. Bei Patienten mit Depression konnten diese Veränderungen noch nicht in solcher Deutlichkeit beschrieben werden. Der vorliegende Artikel führt in grundlegende Konzepte ein und beschreibt neuronale Oszillationen als Biomarker psychischer Erkrankungen, der zur Verbesserung der Diagnostik und Behandlung kognitiver Defizite beitragen könnte.

ABSTRACT

Cognitive control processes are important in order to successfully adapt to demands of daily life. Cognitive dysfunctions are described in various mental disorders such as schizophrenia or depression. However, especially the cognitive syndrome in depression receives less attention in clinical practice. Oscillatory electrical brain activity as neural correlate of cognitive control and its disturbance in mental disorders have received increasing attention in the recent years. Oscillatory electrical brain activity, i. e. rhythmic changes of neural activity, can be measured by the electroencephalogram (EEG). Oscillatory activity in the theta frequency band has emerged in previous research as important for neural communication and as correlate of cognitive control. Patients with schizophrenia showed pathological changes in this frequency band while resolving cognitive conflicts. These changes could not yet be detected that clearly in patients with depression. The present article introduces basic concepts of this research and describes the potential of neural oscillations as biomarker in mental disorders, which could help to improve diagnostics and treatment of cognitive deficits.



Publication History

Article published online:
04 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Kaul R, Baumann M. The influence of cognitive distraction on driver behaviour at signalised intersections. In: 2nd International conference on driver distraction and inattention. Gothenburg, Sweden 2011
  • 2 Becker-Carus C, Wendt M. Handlungssteuerung. In: Becker-Carus C, Wendt M (Hrsg). Allgemeine Psychologie: Eine Einführung. Berlin: Springer; 2017
  • 3 Miyake A, Friedman NP, Emerson MJ. et al The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychol 2000; 41: 49-100
  • 4 Barkley RA. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997; 121: 65-94
  • 5 Pfueller U, Roesch-Ely D, Mundt C. et al Behandlung kognitiver Defizite bei Schizophrenie. Nervenarzt 2010; 81: 556-563
  • 6 Barch DM, Ceaser A. Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci 2012; 16: 27-34
  • 7 McIntyre RS, Xiao HX, Syeda K. et al The prevalence, measurement, and treatment of the cognitive dimension/domain in major depressive disorder. CNS drugs 2015; 29: 577-589
  • 8 Lee RS, Hermens DF, Porter MA. et al A meta-analysis of cognitive deficits in first-episode major depressive disorder. J Affect Disorders 2012; 140: 113-124
  • 9 Snyder HR. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychol Bull 2013; 139: 81-132
  • 10 Rock P, Roiser J, Riedel W. et al Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med 2014; 44: 2029-2040
  • 11 Goschke T. Volition und kognitve Kontrolle. In: Müsseler J (Hrsg.) Allgemeine Psychologie. Berlin: Spektrum; 2011
  • 12 Yuan P, Raz N. Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav R 2014; 42: 180-192
  • 13 Alvarez JA, Emory E. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev 2006; 16: 17-42
  • 14 Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci 2014; 18: 177-185
  • 15 Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci 2004; 8: 170-177
  • 16 Niendam TA, Laird AR, Ray KL. et al Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience 2012; 12: 241-268
  • 17 Nyberg L. Cognitive control in the prefrontal cortex: A central or distributed executive?. Scand J Psychol 2018; 59: 62-65
  • 18 Minzenberg MJ, Laird AR, Thelen S. et al Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiat 2009; 66: 811-822
  • 19 Lesh TA, Niendam TA, Minzenberg MJ. et al Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacol 2011; 36: 316-338
  • 20 Lesh TA, Westphal AJ, Niendam TA. et al Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. Neuroimage-Clin 2013; 2: 590-599
  • 21 Fuster JM. Frontal lobe syndromes. Neuropsychiatry 1996: 407-413
  • 22 Repovs G, Csernansky JG, Barch DM. Brain network connectivity in individuals with schizophrenia and their siblings. Biol Psychiat 2011; 69: 967-973
  • 23 Murrough JW, Iacoviello B, Neumeister A. et al Cognitive dysfunction in depression: neurocircuitry and new therapeutic strategies. Neurobiol Learn Mem 2011; 96: 553-563
  • 24 Koenigs M, Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res 2009; 201: 239-243
  • 25 Wellach I. Praxisbuch EEG: Grundlagen, Befundung, Beurteilung und differenzialdiagnostische Abgrenzung. Stuttgart: Thieme; 2015
  • 26 Kiefer M. Neurowissenschaftliche Methoden. In: Kempf W, Kiefer M, (Hrsg). Forschungsmethoden der Psychologie: Zwischen naturwissenschaftlichem Experiment und sozialwissenschaftlicher Hermeneutik Berlin: Regener; 2009
  • 27 Seifert J. Ereigniskorrelierte EEG-Aktivität. Lengerich: Pabst Science 2005
  • 28 Nunez PL. A study of origins of the time dependencies of scalp EEG: I-theoretical basis. IEEE T Bio-Med Eng. 1981: 271-280
  • 29 Smith JL, Johnstone SJ, Barry RJ. Movement-related potentials in the Go/NoGo task: the P3 reflects both cognitive and motor inhibition. Clin Neurophysiol 2008; 119: 704-714
  • 30 Folstein JR, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 2008; 45: 152-170
  • 31 Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci 2014; 18: 414-421
  • 32 Nigbur R, Ivanova G, Stürmer B. Theta power as a marker for cognitive interference. Clin Neurophysiol 2011; 122: 2185-2194
  • 33 Harper J, Malone SM, Bachman MD. et al Stimulus sequence context differentially modulates inhibition-related theta and delta band activity in a go/no-go task. Psychophysiology 2016; 53: 712-722
  • 34 Harper J, Malone SM, Bernat EM. Theta and delta band activity explain N2 and P3 ERP component activity in a go/no-go task. Clin Neurophysiol 2014; 125: 124-132
  • 35 Holroyd CB, HajiHosseini A, Baker TE. ERPs and EEG oscillations, best friends forever: comment on Cohen, et al. Trends Cogn Sci 2012; 16: 192
  • 36 Cohen MX, Donner TH. Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. J Neurophysiol 2013; 110: 2752-2763
  • 37 Brain Products GmbH. Spectral Analysis using FFT [Video] (14.12.2018). https://www.gotostage.com/channel/brainproducts
  • 38 Moran LV, Hong LE. High vs low frequency neural oscillations in schizophrenia. Schizophrenia Bull 2011; 37: 659-663
  • 39 Cobb S, Buhl E, Halasy K. et al Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 1995; 378: 75-78
  • 40 Fries P, Nikolić D, Singer W. The gamma cycle. Trends Neurosci 2007; 30: 309-316
  • 41 Singer W. Neuronal oscillations: unavoidable and useful?. Eur J Neurosci 2018; 48: 2389-2398
  • 42 Sirota A, Montgomery S, Fujisawa S. et al Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 2008; 60: 683-697
  • 43 Fries P. Rhythms for cognition: communication through coherence. Neuron 2015; 88: 220-235
  • 44 Canolty RT, Edwards E, Dalal SS. et al High gamma power is phase-locked to theta oscillations in human neocortex. science 2006; 313: 1626-1628
  • 45 Lisman JE, Jensen O. The theta-gamma neural code. Neuron 2013; 77: 1002-1016
  • 46 Buzssáki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004; 304: 1926-1929
  • 47 Pavlides C, Greenstein YJ, Grudman M. et al Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of θ-rhythm. Brain Res 1988; 439: 383-387
  • 48 Huerta PT, Lisman JE. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 1993; 364: 723-725
  • 49 Uhlhaas P, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 2010; 11: 100-113
  • 50 Grillner S, Markram H, De Schutter E. et al Microcircuits in action – from CPGs to neocortex. Trends Neurosci 2005; 28: 525-533
  • 51 Wulff P, Ponomarenko AA, Bartos M. et al Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. P Natl Acad Sci USA 2009; 106: 3561-3566
  • 52 Colgin LL, Moser EI. Gamma oscillations in the hippocampus. Physiology 2010; 25: 319-329
  • 53 Mizuseki K, Sirota A, Pastalkova E. et al Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron 2009; 64: 267-280
  • 54 Roux F, Uhlhaas PJ. Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information?. Trends Cogn Sci 2014; 18: 16-25
  • 55 Hanslmayr S, Pastötter B, Bäuml K-H. et al The electrophysiological dynamics of interference during the Stroop task. J Cognitive Neurosci 2008; 20: 215-225
  • 56 Ferreira CS, Marful A, Staudigl T. et al Medial prefrontal theta oscillations track the time course of interference during selective memory retrieval. J Cognitive Neurosci 2014; 26: 777-791
  • 57 Mas-Herrero E, Marco-Pallarés J. Theta oscillations integrate functionally segregated sub-regions of the medial prefrontal cortex. Neuroimage 2016; 143: 166-174
  • 58 Klaiber I, Kiefer M. Theta power and the N2/P3 event- related potential complex as electrophysio-logical markers for cognitive control processes: A comparison between the Go/NoGo and the Flanker tasks. Tagung experimentell arbeitender Psychologen (TeaP);. 2019. London:
  • 59 Harmony T, Alba A, Marroquín JL. et al Time-frequency-topographic analysis of induced power and synchrony of EEG signals during a Go/No-Go task. Int J Psychophysiol 2009; 71: 9-16
  • 60 Brier MR, Ferree TC, Maguire MJ. et al Frontal theta and alpha power and coherence changes are modulated by semantic complexity in Go/NoGo tasks. Int J Psychophysiol 2010; 78: 215-224
  • 61 Hsieh L-T, Ranganath C. Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. Neuroimage 2014; 85: 721-729
  • 62 Voytek B, Kayser AS, Badre D. et al Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nat Neurosci 2015; 18: 1318-1324
  • 63 Eschmann KCJ, Bader R, Mecklinger A. Topographical differences of frontal-midline theta activity reflect functional differences in cognitive control abilities. Brain Cognition 2018; 123: 57-64
  • 64 Pinner JF, Cavanagh JF. Frontal theta accounts for individual differences in the cost of conflict on decision making. Brain Res 2017; 1672: 73-80
  • 65 Cavanagh JF, Figueroa CM, Cohen MX. et al Frontal theta reflects uncertainty and unexpectedness during exploration and exploitation. Cereb Cortex 2012; 22: 2575-2586
  • 66 Van Ackeren MJ, Schneider TR, Müsch K. et al Oscillatory neuronal activity reflects lexical-semantic feature integration within and across sensory modalities in distributed cortical networks. J Neurosci 2014; 34: 14318-14323
  • 67 Cavanagh JF, Zambrano-Vazquez L, Allen JJ. Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology 2012; 49: 220-238
  • 68 Cohen MX. A neural microcircuit for cognitive conflict detection and signaling. Trends Neurosci 2014; 37: 480-490
  • 69 Tsujimoto T, Shimazu H, Isomura Y. et al Prefrontal theta oscillations associated with hand movements triggered by warning and imperative stimuli in the monkey. Neurosci Lett 2003; 351: 103-106
  • 70 Tsujimoto T, Shimazu H, Isomura Y. Direct recording of theta oscillations in primate prefrontal and anterior cingulate cortices. J Neurophysiol 2006; 95: 2987-3000
  • 71 Cooper PS, Darriba Á, Karayanidis F. et al Contextually sensitive power changes across multiple frequency bands underpin cognitive control. Neuroimage 2016; 132: 499-511
  • 72 Unger A, Erfurth A, Sachs G. Negativsymptome in der Schizophrenie und ihre Differenzialdiagnose. psychopraxis neuropraxis 2018; 21: 73-78
  • 73 Levin S, Yurgelun-Todd D, Craft S. Contributions of clinical neuropsychology to the study of schizophrenia. J Abnorm Psychol 1989; 98: 341
  • 74 Hutton SB, Puri B, Duncan L-J. et al Executive function in first-episode schizophrenia. Psychol Med 1998; 28: 463-473
  • 75 Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bull 1987; 13: 261-276
  • 76 Maß R. Eppendorfer Schizophrenie Inventar (ESI). Göttingen: Hogrefe; 2001
  • 77 Orellana G, Slachevsky A. Executive functioning in schizophrenia. Frontiers in psychiatry 2013; 4: 1-15
  • 78 Johnson-Selfridge M, Zalewski C. Moderator variables of executive functioning in schizophrenia: meta-analytic findings. Schizophrenia Bull 2001; 27: 305-316
  • 79 Egan MF, Goldberg TE, Gscheidle T. et al Relative risk for cognitive impairments in siblings of patients with schizophrenia. Biol Psychiat 2001; 50: 98-107
  • 80 Kuha A, Tuulio-Henriksson A, Eerola M. et al Impaired executive performance in healthy siblings of schizophrenia patients in a population-based study. Schizophr Res 2007; 92: 142-150
  • 81 Szöke A, Schürhoff F, Mathieu F. et al Tests of executive functions in first-degree relatives of schizophrenic patients: a meta-analysis. Psychol Med 2005; 35: 771-782
  • 82 Tolman AW, Kurtz MM. Neurocognitive predictors of objective and subjective quality of life in individuals with schizophrenia: a meta-analytic investigation. Schizophrenia Bull 2010; 38: 304-315
  • 83 Fett A-KJ, Viechtbauer W, Penn DL. et al The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neurosci Biobehav R 2011; 35: 573-588
  • 84 Bowie CR, Depp C, McGrath JA. et al Prediction of real-world functional disability in chronic mental disorders: a comparison of schizophrenia and bipolar disorder. Americ J Psych 2010; 167: 1116-1124
  • 85 Miskowiak KW, Ott C, Petersen JZ. et al Systematic review of randomized controlled trials of candidate treatments for cognitive impairment in depression and methodological challenges in the field. Eur Neuropsychopharm 2016; 26: 1845-1867
  • 86 Dilling H, Freyberger HJ. Taschenführer zur ICD-10-Klassifikation psychischer Störungen. Bern: Huber; 2012
  • 87 Hautzinger M, Keller F, Kühner C. BDI-II Beck-Depressions-Inventar. Frankfurt/Main: Harcourt Test Services; 2006
  • 88 Beck AT, Steer RA, Brown GK. Beck depression inventory-II. San Antonio 1996; 78: 490-498
  • 89 Montgomery SA, Åsberg M. A new depression scale designed to be sensitive to change. Brit J Psychiat 1979; 134: 382-389
  • 90 Neumann NU, Schulte RM. Montgomery-Asberg-Depression-Rating-Skala: Bestimmung der Validität und Interrater-Reliabilität der deutschen Fassung Psycho. 1988; 14: 911-924
  • 91 Ragguett R-M, Cha DS, Kakar R. et al Assessing and measuring cognitive function in major depressive disorder. Evidence-based mental health 2016; 19: 106-109
  • 92 Purdon SE. The Screen for Cognitive Impairment in Psychiatry (SCIP): Administration and Psychometric Properties. In. Edmonton, Alberta. 2005
  • 93 McIntyre RS, Best MW, Bowie CR. et al The THINC-Integrated Tool (THINC-it) Screening Assessment for Cognitive Dysfunction: Validation in Patients With Major Depressive Disorder. J Clin Psychiat 2017; 78: 873-881
  • 94 Fehnel SE, Forsyth BH, DiBenedetti DB. et al Patient-centered assessment of cognitive symptoms of depression. CNS spectrums 2016; 21: 43-52
  • 95 Sullivan MJ, Edgley K, Dehoux E. A survey of multiple sclerosis: I. Perceived cognitive problems and compensatory strategy use. Can J Rehab 1990; 4: 99-105
  • 96 Sabbe B, Hulstijn W, van Hoof J. et al Retardation in depression: assessment by means of simple motor tasks. J Affect Disorders 1999; 55: 39-44
  • 97 Friedman NP, Miyake A. The relations among inhibition and interference control functions: a latent-variable analysis. J Exp Psychol Gen 2004; 133: 101-135
  • 98 Ahern E, Semkovska M. Cognitive functioning in the first-episode of major depressive disorder: A systematic review and meta-analysis. Neuropsychology 2017; 31: 52-72
  • 99 Conradi H, Ormel J, De Jonge P. Presence of individual (residual) symptoms during depressive episodes and periods of remission: a 3-year prospective study. Psychol Med 2011; 41: 1165-1174
  • 100 Perini G, Ramusino MC, Sinforiani E. et al Cognitive impairment in depression: recent advances and novel treatments. Neuropsych Dis Treat 2019; 15: 1249-1258
  • 101 Senkowski D, Gallinat J. Dysfunctional prefrontal gamma-band oscillations reflect working memory and other cognitive deficits in schizophrenia. Biol Psychiat 2015; 77: 1010-1019
  • 102 Lewis DA, Curley AA, Glausier JR. et al Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 2012; 35: 57-67
  • 103 Dienel SJ, Lewis DA. Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol Dis 2019; 131: 1-29
  • 104 Ryman SG, Cavanagh JF, Wertz CJ. et al Impaired midline theta power and connectivity during proactive cognitive control in schizophrenia. Biol Psychiat 2018; 84: 675-683
  • 105 Cooper PS, Hughes ME. Impaired theta and alpha oscillations underlying stopsignal response inhibition deficits in schizophrenia [Letter]. Schizophr Res 2018; 193: 474-476
  • 106 Aron AR. From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiat 2011; 69: e55-e68
  • 107 Popov T, Wienbruch C, Meissner S. et al A mechanism of deficient interregional neural communication in schizophrenia. Psychophysiology 2015; 52: 648-656
  • 108 Barr MS, Rajji TK, Zomorrodi R. et al Impaired theta-gamma coupling during working memory performance in schizophrenia. Schizophr Res 2017; 189: 104-110
  • 109 Schmiedt C, Brand A, Hildebrandt H. et al Event-related theta oscillations during working memory tasks in patients with schizophrenia and healthy controls. Cognitive Brain Res 2005; 25: 936-947
  • 110 Sigurdsson T, Stark KL, Karayiorgou M. et al Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 2010; 464: 763-767
  • 111 Fingelkurts AA, Fingelkurts AA. Altered structure of dynamic electroencephalogram oscillatory pattern in major depression. Biol Psychiat 2015; 77: 1050-1060
  • 112 Gärtner M, Rohde-Liebenau L, Grimm S. et al Working memory-related frontal theta activity is decreased under acute stress. Psychoneuroendocrino 2014; 43: 105-113
  • 113 Hammen C. Stress and depression. Annu Rev Clin Psycho 2005; 1: 293-319
  • 114 Kaiser S, Unger J, Kiefer M. et al Executive control deficit in depression: event-related potentials in a Go/Nogo task. Psychiat Res-Neuroim 2003; 122: 169-184
  • 115 Ruchsow M, Groen G, Kiefer M. et al Electrophysiological evidence for reduced inhibitory control in depressed patients in partial remission: a Go/Nogo study. Int J Psychophysiol 2008; 68: 209-218
  • 116 Zheng C, Zhang T. Synaptic plasticity-related neural oscillations on hippocampus-prefrontal cortex pathway in depression. Neuroscience 2015; 292: 170-180
  • 117 Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Americ J Psych 2003; 160: 636-645
  • 118 Linkenkaer-Hansen K, Smit DJ, Barkil A. et al Genetic contributions to long-range temporal correlations in ongoing oscillations. J Neurosci 2007; 27: 13882-13889
  • 119 Hong LE, Summerfelt A, Mitchell BD. et al Sensory gating endophenotype based on its neural oscillatory pattern and heritability estimate. Arch Gen Psychiat 2008; 65: 1008-1016
  • 120 Spronk D, Arns M, Barnett K. et al An investigation of EEG, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: a pilot study. J Affect Disorders 2011; 128: 41-48
  • 121 Ulrich G, Renfordt E, Zeller G. et al Interrelation between changes in the EEG and psychopathology under pharmacotherapy for endogenous depression. Pharmacopsychiatry 1984; 17: 178-183
  • 122 Knott VJ, Telner JI, Lapierre YD. et al Quantitative EEG in the prediction of antidepressant response to imipramine. J Affect Disorders 1996; 39: 175-184
  • 123 Arns M, Etkin A, Hegerl U. et al Frontal and rostral anterior cingulate (rACC) theta EEG in depression: Implications for treatment outcome?. Eur Neuropsychopharm 2015; 25: 1190-1200
  • 124 Pizzagalli DA, Webb CA, Dillon DG. et al Pretreatment rostral anterior cingulate cortex theta activity in relation to symptom improvement in depression: a randomized clinical trial. JAMA Psychiat 2018; 75: 547-554
  • 125 Fitzgerald PJ, Watson BO. Gamma oscillations as a biomarker for major depression: an emerging topic. Transl Psychiat 2018; 8: 1-7
  • 126 Gold C, Fachner J, Erkkilä J. Validity and reliability of electroencephalographic frontal alpha asymmetry and frontal midline theta as biomarkers for depression. Scand J Psychol 2013; 54: 118-126
  • 127 Lam RW, Kennedy SH, McIntyre RS. et al Cognitive dysfunction in major depressive disorder: effects on psychosocial functioning and implications for treatment. Can J Psychiat 2014; 59: 649-654
  • 128 Laux G. Ein Antidepressivum weniger (11.08.2016). https://www.deutsche-apotheker-zeitung.de/daz-az/2016/daz-32-2016/ein-antidepressivum-weniger
  • 129 Angelakis E, Liouta E. Transcranial electrical stimulation: Methodology and applications. J Neurotherapy 2011; 15: 337-357
  • 130 Jacobson L, Ezra A, Berger U. et al Modulating oscillatory brain activity correlates of behavioral inhibition using transcranial direct current stimulation. Clin Neurophysiol 2012; 123: 979-984
  • 131 Mansouri F, Shanbour A, Mazza F. et al Effect of theta transcranial alternating current stimulation and phase-locked transcranial pulsed current stimulation on learning and cognitive control. Front Neurosci 2019; 13: 1-10
  • 132 Lowe CJ, Manocchio F, Safati AB. et al The effects of theta burst stimulation (TBS) targeting the prefrontal cortex on executive functioning: A systematic review and meta-analysis. Neuropsychologia 2018; 111: 344-359
  • 133 Paulus W. Transcranial electrical stimulation (tES–tDCS; tRNS, tACS) methods. Neuropsychol Rehabil 2011; 21: 602-617
  • 134 Krause MR, Vieira PG, Csorba BA. et al Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. P Natl Acad Sci USA 2019; 116: 5747-5755
  • 135 Eschmann KCJ, Mecklinger A. You’ve got the power: Frontal-midline theta neurofeedback training and its transfer to cognitive control processes. Tagung experimentell arbeitender Psychologen (TeaP);. 2019. London:
  • 136 Eschmann KCJ, Bader R, Mecklinger A. Improving episodic memory: Frontal-midline theta neurofeedback training increases source memory performance. Neuroimage 2020; 222
  • 137 Enriquez-Geppert S, Huster RJ, Figge C. et al Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting. Front Behav Neurosci 2014; 8: 1-13