Subscribe to RSS
DOI: 10.1055/a-1303-8025
Is Mental Stress the Primary Cause of Glaucoma?
Article in several languages: English | deutschAbstract
The prognosis of going blind is very stressful for patients diagnosed with “glaucoma”. Worries and fear of losing independence is a constant mental burden, with secondary risks of depression and social isolation. But stress is not only a result of glaucoma but also a possible cause (risk factor). This should not be surprising, given that chronic stress can trigger “psychosomatic” organ dysfunctions anywhere in the body. Why should the organ “eye” be an exception? Indeed, glaucoma patients often suspect that severe emotional stress caused their visual field loss or “foggy vision”. The hypothesis that stress is a possible cause of glaucoma is supported by different observations: (i) acute and chronic stress increases intraocular pressure and (ii) long-term stress can lead to vascular dysregulation of the microcirculation in the eye and brain (“Flammerʼs syndrome”), leading to partial hypoxia and hypoglycaemia (hypo-metabolism). Even if nerve cells do not die, they may then become inactive (“silent” neurons). (iii) Degenerative changes have been reported in the brain of glaucoma patients, affecting not only anterograde or transsynaptic areas of the central visual pathway, but degeneration is also found (iv) in brain areas involved in emotional appraisal and the physiological regulation of stress hormones. There are also psychological hints indicating that stress is a cause of glaucoma: (v) Glaucoma patients with Flammerʼs syndrome show typical personality traits that are associated with low stress resilience: they often have cold hands or feet, are ambitious (professionally successful), perfectionistic, obsessive, brooding and worrying a lot. (vi) If stress hormone levels and inflammation parameters are reduced in glaucoma patients by relaxation with meditation, this correlates with normalisation of intraocular pressure, and yet another clue is that (vii) visual field improvements after non-invasive current stimulation therapy, that are known to improve circulation and neuronal synchronisation, are much most effective in patients with stress resilient personalities. An appreciation of stress as a “cause” of glaucoma suggests that in addition to standard therapy (i) stress reduction through relaxation techniques should be recommended (e.g. meditation), and (ii) self-medication compliance should not be induced by kindling anxiety and worries with negative communication (“You will go blind!”), but communication should be positive (“The prognosis is optimistic”).
Key words
glaucoma - low vision - mental stress - vascular dysregulation - personality - vision restorationPublication History
Received: 03 November 2020
Accepted: 18 January 2021
Article published online:
12 February 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1 Pfau N, Kern AO, Wolfram C. et al. GBE-Themenheft Blindheit und Sehbehinderung. Gesundheitsberichterstattung des Bundes gemeinsam getragen von RKI und DESTATIS. 2017 Accessed February 1, 2021 at: https://www.gbe-bund.de/gbe/abrechnung.prc_abr_test_logon?p_uid=gast&p_aid=0&p_knoten=FID&p_sprache=D&p_suchstring=26492
- 2 Sabel BA, Wang J, Cárdenas-Morales L. et al. Mental stress as consequence and cause of vision loss: the dawn of psychosomatic ophthalmology for preventive and personalized medicine. EPMA J 2018; 9: 133-160 doi:10.1007/s13167-018-0136-8
- 3 Grehn F. Augenheilkunde. Berlin, Heidelberg: Springer; 2012
- 4 Flammer J, Konieczka K, Flammer AJ. The primary vascular dysregulation syndrome: implications for eye diseases. EPMA J 2013; 4: 14 doi:10.1186/1878-5085-4-14
- 5 Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA 2014; 311: 1901-1911 doi:10.1001/jama.2014.3192
- 6 Salt TE, Cordeiro MF. Glutamate excitotoxicity in glaucoma: throwing the baby out with the bathwater?. Eye (Lond) 2006; 20: 730-731 doi:10.1038/sj.eye.6701967 author reply 731–732
- 7 Dekeyster E, Geeraerts E, Buyens T. et al. Tackling Glaucoma from within the Brain: An Unfortunate Interplay of BDNF and TrkB. PLoS One 2015; 10: e0142067 doi:10.1371/journal.pone.0142067
- 8 Chong RS, Martin KR. Glial cell interactions and glaucoma. Curr Opin Ophthalmol 2015; 26: 73-77 doi:10.1097/ICU.0000000000000125
- 9 Cavet ME, Vittitow JL, Impagnatiello F. et al. Nitric oxide (NO): an emerging target for the treatment of glaucoma. Invest Ophthalmol Vis Sci 2014; 55: 5005-5015 doi:10.1167/iovs.14-14515
- 10 Faiq MA, Dada R, Kumar A. et al. Brain: The Potential Diagnostic and Therapeutic Target for Glaucoma. CNS Neurol Disord Drug Targets 2016; 15: 839-844 doi:10.2174/1871527315666160321111522
- 11 Yildiz P, Kebapci MN, Mutlu F. et al. Intraocular Pressure Changes During Oral Glucose Tolerance Tests in Diabetic and Non-diabetic Individuals. Exp Clin Endocrinol Diabetes 2016; 124: 385-388
- 12 Dada T, Mittal D, Mohanty K. et al. Mindfulness Meditation Reduces Intraocular Pressure, Lowers Stress Biomarkers and Modulates Gene Expression in Glaucoma: A Randomized Controlled Trial. J Glaucoma 2018; 27: 1061-1067 doi:10.1097/IJG.0000000000001088
- 13 Böhringer HR, Meerwein F, Muller C. Zur Psychiatrie des primären Glaukoms. Klin Monbl Augenheilkd Augenarztl Fortbild 1953; 123: 283-302
- 14 Schultz-Zehden W, Bischof F. Auge und Psychosomatik. Deutscher Ärzte-Verlag; 1986
- 15 Kaluza G, Strempel I. Effects of self-relaxation methods and visual imagery on IOP in patients with open-angle glaucoma. Ophthalmologica 1995; 209: 122-128 doi:10.1159/000310596
- 16 Kaluza G, Strempel I, Maurer H. Stress reactivity of intraocular pressure after relaxation training in open-angle glaucoma patients. J Behav Med 1996; 19: 587-598 doi:10.1007/BF01904906
- 17 Deutsche Bibelgesellschaft. Altes Testament, Psalmen 6, Buch Hiob, Kapitel 17, Verse 2 und 7. Accessed February 1, 2021 at: https://www.die-bibel.de/bibeln/online-bibeln/lesen/LU17/JOB.17/Hiob-17
- 18 Susruta. (1300 BC) “Susruta Samhita”. Varanasi, India: Krishnadas Academy; 1998
- 19 Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nature reviews. Neuroscience 2009; 10: 397-409 doi:10.1038/nrn2647
- 20 Wax MB, Tezel G. Immunoregulation of retinal ganglion cell fate in glaucoma. Exp Eye Res 2009; 88: 825-830 doi:10.1016/j.exer.2009.02.005
- 21 Vu THK, Jager MJ, Chen DF. The Immunology of Glaucoma. Asia Pac J Ophthalmol (Phila) 2012; 1: 303-311 doi:10.1097/APO.0b013e31826f57a3
- 22 Tezel G, Wax MB. The immune system and glaucoma. Curr Opin Ophthalmol 2004; 15: 80-84 doi:10.1097/00055735-200404000-00003
- 23 Sapolsky RM. Stress, Glucocorticoids, and Damage to the Nervous System: The Current State of Confusion. Stress 1996; 1: 1-19 doi:10.3109/10253899609001092
- 24 Lupien SJ, McEwen BS, Gunnar MR. et al. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 2009; 10: 434-445 doi:10.1038/nrn2639
- 25 McKlveen JM, Myers B, Flak JN. et al. Role of prefrontal cortex glucocorticoid receptors in stress and emotion. Biol Psychiatry 2013; 74: 672-679 doi:10.1016/j.biopsych.2013.03.024
- 26 Wang J, Li T, Sabel BA. et al. Structural brain alterations in primary open angle glaucoma: a 3 T MRI study. Sci Rep 2016; 6: 18969 doi:10.1038/srep18969
- 27 Yücel Y, Zhang Q, Weinreb RN. et al. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 2003; 22: 465-481 doi:10.1016/s1350-9462(03)00026-0
- 28 Gupta N, Yücel YH. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol 2007; 18: 110-114 doi:10.1097/ICU.0b013e3280895aea
- 29 Chen Z, Lin F, Wang J. et al. Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma. Clin Experiment Ophthalmol 2013; 41: 43-49 doi:10.1111/j.1442-9071.2012.02832.x
- 30 Gupta N, Ang LC, Noël de Tilly L. et al. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol 2006; 90: 674-678 doi:10.1136/bjo.2005.086769
- 31 Gupta N, Ly T, Zhang Q. et al. Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. Exp Eye Res 2007; 84: 176-184 doi:10.1016/j.exer.2006.09.013
- 32 Dai H, Mu KT, Qi JP. et al. Assessment of lateral geniculate nucleus atrophy with 3 T MR imaging and correlation with clinical stage of glaucoma. AJNR Am J Neuroradiol 2011; 32: 1347-1353 doi:10.3174/ajnr.A2486
- 33 Zhang S, Wang B, Xie Y. et al. Retinotopic Changes in the Gray Matter Volume and Cerebral Blood Flow in the Primary Visual Cortex of Patients With Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2015; 56: 6171-6178 doi:10.1167/iovs.15-17286
- 34 Yu L, Xie B, Yin X. et al. Reduced cortical thickness in primary open-angle glaucoma and its relationship to the retinal nerve fiber layer thickness. PLoS One 2013; 8: e73208 doi:10.1371/journal.pone.0073208
- 35 Dai H, Morelli JN, Ai F. et al. Resting-state functional MRI: functional connectivity analysis of the visual cortex in primary open-angle glaucoma patients. Hum Brain Mapp 2013; 34: 2455-2463 doi:10.1002/hbm.22079
- 36 Chen WW, Wang N, Cai S. et al. Structural brain abnormalities in patients with primary open-angle glaucoma: a study with 3 T MR imaging. Invest Ophthalmol Vis Sci 2013; 54: 545-554 doi:10.1167/iovs.12-9893
- 37 Qing G, Zhang S, Wang B. et al. Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2010; 51: 4627-4634 doi:10.1167/iovs.09-4834
- 38 Huang X, Cai FQ, Hu PH. et al. Disturbed spontaneous brain-activity pattern in patients with optic neuritis using amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study. Neuropsychiatr Dis Treat 2015; 11: 3075-3083 doi:10.2147/NDT.S92497
- 39 Song Y, Mu K, Wang J. et al. Altered spontaneous brain activity in primary open angle glaucoma: a resting-state functional magnetic resonance imaging study. PloS One 2014; 9: e89493 doi:10.1371/journal.pone.0089493
- 40 Chen L, Li S, Cai F. et al. Altered functional connectivity density in primary angle-closure glaucoma patients at resting-state. Quant Imaging Med Surg 2019; 9: 603-614 doi:10.21037/qims.2019.04.13
- 41 Chen W, Zhang L, Xu Y-G. et al. Primary angle-closure glaucomas disturb regional spontaneous brain activity in the visual pathway: an fMRI study. Neuropsychiatr Dis Treat 2017; 13: 1409-1417 doi:10.2147/NDT.S134258
- 42 Jiang F, Yu C, Zuo MJ. et al. Frequency-dependent neural activity in primary angle-closure glaucoma. Neuropsychiatr Dis Treat 2019; 15: 271-282 doi:10.2147/NDT.S187367
- 43 Osborne NN, Núñez-Álvarez C, Joglar B. et al. Glaucoma: Focus on mitochondria in relation to pathogenesis and neuroprotection. Eur J Pharmacol 2016; 787: 127-133
- 44 Mozaffarieh M, Flammer J. New insights in the pathogenesis and treatment of normal tension glaucoma. Curr Opin Pharmacol 2013; 13: 43-49
- 45 Flammer J, Pache M, Resink T. Vasospasm, its Role in the Pathogenesis of Diseases with Particular Reference to the Eye. Prog Retin Eye Res 2001; 20: 319-349 doi:10.1016/s1350-9462(00)00028-8
- 46 Flammer J, Konieczka K. The discovery of the Flammer syndrome: a historical and personal perspective. EPMA J 2017; 8: 75-97 doi:10.1007/s13167-017-0090-x
- 47 Flammer J, Konieczka K, Flammer AJ. The primary vascular dysregulation syndrome: implications for eye diseases. EPMA J 2013; 4: 14
- 48 Konieczka K, Ritch R, Traverso C. et al. Flammer syndrome. EPMA J 2014; 5: 11
- 49 Flammer J, Konieczka K, Bruno RM. et al. The eye and the heart. Eur Heart J 2013; 34: 1270-1278 doi:10.1093/eurheartj/eht023
- 50 Konieczka K, Choi HJ, Koch S. et al. Relationship between normal tension glaucoma and Flammer syndrome. EPMA J 2017; 8: 111-117 doi:10.1007/s13167-017-0097-3
- 51 Sabel BA, Wang J, Fähse S. et al. Personality and stress influence vision restoration and recovery in glaucoma and optic neuropathy following alternating current stimulation: implications for personalized neuromodulation and rehabilitation. EPMA J 2020; 66: 901 doi:10.1007/s13167-020-00204-3
- 52 Golubnitschaja O. Flammer Syndrome. Vol. 11. Cham: Springer International Publishing; 2019
- 53 Sabel BA, Cárdenas-Morales L, Gao Y. Vision Restoration in Glaucoma by Activating Residual Vision with a Holistic, Clinical Approach: A Review. J Curr Glaucoma Pract 2018; 12: 1-9 doi:10.5005/jp-journals-10028-1237
- 54 Folkman S. Stress: Appraisal and Coping. In: Gellman MD, Turner JR. eds. Encyclopedia of Behavioral Medicine. New York: Springer; 2013: 1913-1915
- 55 Carver CS, Connor-Smith J. Personality and coping. Annu Rev Psychol 2010; 61: 679-704
- 56 Gawron VJ. Ocular accommodation, personality, and autonomic balance. Am J Optom Physiol Opt 1983; 60: 630-639 doi:10.1097/00006324-198307000-00011
- 57 Karimzade A, Besharat MA. An investigation of the Relationship Between Personality Dimensions and Stress Coping Styles. Procedia Soc Behav Sci 2011; 30: 797-802
- 58 Matešić K, Nakić Radoš S, Kuna K. Comparing Relationship Between Personality Traits and Ways of Coping in Samples of Pregnant Women and Students. Arch Psychiatry Res 2019; 55: 153-164
- 59 Çakmak H, Altinyazar V, Yilmaz SG. et al. The temperament and character personality profile of the glaucoma patient. BMC Ophthalmol 2015; 15: 125 doi:10.1186/s12886-015-0117-9
- 60 Freeman EE, Lesk MR, Harasymowycz P. et al. Maladaptive coping strategies and glaucoma progression. Medicine 2016; 95: e4761 doi:10.1097/MD.0000000000004761
- 61 Mabuchi F, Yoshimura K, Kashiwagi K. et al. Personality assessment based on the five-factor model of personality structure in patients with primary open-angle glaucoma. Jpn J Ophthalmol 2005; 49: 31-35 doi:10.1007/s10384-004-0134-3
- 62 Gall C, Schmidt S, Schittkowski MP. et al. Alternating Current Stimulation for Vision Restoration after Optic Nerve Damage: A Randomized Clinical Trial. PLoS One 2016; 11: e0156134 doi:10.1371/journal.pone.0156134
- 63 Connell N, Merabet LB. Uncovering the connectivity of the brain in relation to novel vision rehabilitation strategies. Neurology 2014; 83: 484-485 doi:10.1212/WNL.0000000000000664
- 64 Freund HJ, Sabel BA, Witte O. Brain Plasticity. Philadelphia, USA: Lippincott/Raven Press; 1997
- 65 Matteo BM, Viganò B, Cerri CG. et al. Visual field restorative rehabilitation after brain injury. J Vis 2016; 16: 11 doi:10.1167/16.9.11
- 66 Sabel BA, Henrich-Noack P, Fedorov A. et al. Vision restoration after brain and retina damage: the “residual vision activation theory”. Prog Brain Res 2011; 192: 199-262 doi:10.1016/B978-0-444-53355-5.00013-0
- 67 Sabel BA, Flammer J, Merabet LB. Residual vision activation and the brain-eye-vascular triad: Dysregulation, plasticity and restoration in low vision and blindness – a review. Restor Neurol Neurosci 2018; 36: 767-791 doi:10.3233/RNN-180880
- 68 Konieczka K, Todorova MG, Bojinova R I. et al. Unexpected Effect of Calcium Channel Blockers on the Optic Nerve Compartment Syndrome. Klin Monbl Augenheilkd 2016; 233: 387-390
- 69 Shily BG. Psychophysiological stress, elevated intraocular pressure, and acute closed-angle glaucoma. Am J Optom Physiol Opt 1987; 64: 866-870 doi:10.1097/00006324-198711000-00011
- 70 Kruzliak P, Sabo J, Zulli A. Endothelial endoplasmic reticulum and nitrative stress in endothelial dysfunction in the atherogenic rabbit model. Acta Histochem 2015; 117: 762-766 doi:10.1016/j.acthis.2015.08.003
- 71 Stahl JE, Dossett ML, LaJoie AS. et al. Relaxation Response and Resiliency Training and Its Effect on Healthcare Resource Utilization. PLoS One 2015; 10: e0140212 doi:10.1371/journal.pone.0140212
- 72 Tanito M, Kaidzu S, Takai Y. et al. Correlation between Systemic Oxidative Stress and Intraocular Pressure Level. PLoS One 2015; 10: e0133582 doi:10.1371/journal.pone.0133582
- 73 Bola M, Gall C, Moewes C. et al. Brain functional connectivity network breakdown and restoration in blindness. Neurology 2014; 83: 542-551
- 74 Sabel BA, Cárdenas-Morales L, Gao Y. Vision Restoration in Glaucoma by Activating Residual Vision with a Holistic, Clinical Approach: A Review. J Curr Glaucoma Pract 2018; 12: 1-9
- 75 Golubnitschaja O, Baban B, Boniolo G. et al. Medicine in the early twenty-first century: paradigm and anticipation – EPMA position paper 2016. EPMA J 2016; 7: 23 doi:10.1186/s13167-016-0072-4
- 76 Gallego-Ortega A, Norte-Muñoz M, Miralles de Imperial-Ollero JA. et al. Functional and morphological alterations in a glaucoma model of acute ocular hypertension. Prog Brain Res 2020; 256: 1-29 doi:10.1016/bs.pbr.2020.07.003
- 77 Murphy MC, Conner IP, Teng CY. et al. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma. Sci Rep 2016; 6: 31464 doi:10.1038/srep31464
- 78 Tribble JR, Vasalauskaite A, Redmond T. et al. Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma. Brain Commun 2019; 1: fcz035 doi:10.1093/braincomms/fcz035
- 79 Haykal S, Curcic-Blake B, Jansonius NM. et al. Fixel-Based Analysis of Visual Pathway White Matter in Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2019; 60: 3803-3812 doi:10.1167/iovs.19-27447
- 80 Gupta N, Greenberg G, Noël de Tilly L. et al. Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging. Br J Ophthalmol 2009; 93: 56-60 doi:10.1136/bjo.2008.138172
- 81 Schmidt MA, Knott M, Heidemann R. et al. Investigation of lateral geniculate nucleus volume and diffusion tensor imaging in patients with normal tension glaucoma using 7 tesla magnetic resonance imaging. PloS One 2018; 13: e0198830 doi:10.1371/journal.pone.0198830
- 82 Giorgio A, Zhang J, Costantino F. et al. Diffuse brain damage in normal tension glaucoma. Hum Brain Mapp 2018; 39: 532-541 doi:10.1002/hbm.23862