Zahnmedizin up2date 2020; 14(05): 379-394
DOI: 10.1055/a-1304-0567
Zahnerhaltung, Prävention und Restauration

Einfluss der Ernährung auf die Mundgesundheit

Johan Wölber

Das Ernährungsverhalten von Homo sapiens hat sich im Laufe der Menschheitsgeschichte stark verändert und stellt mittlerweile immer häufiger einen Grund für Erkrankungen dar. Dieser Beitrag möchte zeigen, welche Auswirkungen moderne Ernährung auf die Munderkrankungen hat und welche Ernährungsstrategien für Mundgesundheit genutzt werden können.

Kernaussagen
  • Moderne Ernährungsweisen in Industrienationen (Western Diet) sind ein wesentlicher Risikofaktor für allgemeine und orale Gesundheit.

  • Evolutionär angepasste, natürliche Ernährungsweisen gehen hingegen mit Vorteilen für die allgemeine und orale Gesundheit einher.

  • Statt prozessierter Kohlenhydrate sollten für gesundheitliche Vorteile komplexe Kohlenhydrate (mit hohem Ballaststoffgehalt) zugeführt werden.

  • Eine vornehmlich pflanzenbasierte Vollwertkost unter Berücksichtigung einer adäquaten Omega-3-Fettsäuren- und Vitamin-B12- sowie Vitamin-D-Aufnahme geht mit mundgesundheitlichen als auch allgemeingesundheitlichen Vorteilen einher.

  • Ernährungstherapie in der Zahnmedizin kann frühzeitig Fehlernährung identifizieren und viele allgemeingesundheitliche Faktoren positiv beeinflussen.



Publikationsverlauf

Artikel online veröffentlicht:
08. Dezember 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Löe H, Theilade E, Jensen SB. Experimental gingivitis in man. J Periodontol 1965; 36: 177-187
  • 2 Torp Austvoll C, Gallo V, Montag D. Health impact of the Anthropocene: the complex relationship between gut microbiota, epigenetics, and human health, using obesity as an example. Glob Health Epidemiol Genom 2020; 5: e2
  • 3 Baumgartner S, Imfeld T, Schicht O. et al. The impact of the stone age diet on gingival conditions in the absence of oral hygiene. J Periodontol 2009; 80: 759-768
  • 4 Woelber JP, Bremer K, Vach K. et al. An oral health optimized diet can reduce gingival and periodontal inflammation in humans – a randomized controlled pilot study. BMC Oral Health 2016; 17: 28
  • 5 Woelber JP, Gärtner M, Breuninger L. et al. The influence of an anti-inflammatory diet on gingivitis. A randomized controlled trial. J Clin Periodontol 2019; 46: 481-490
  • 6 Hublin J-J, Ben-Ncer A, Bailey SE. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 2017; 546: 289-292
  • 7 Adler CJ, Dobney K, Weyrich LS. et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature genetics 2013; 45: 450
  • 8 Bouchard P, Carra MC, Boillot A. et al. Risk factors in periodontology: a conceptual framework. J Clin Periodontol 2017; 44: 125-131
  • 9 Ströhle A, Behrendt I, Behrendt P. et al. Alternative Ernährungsformen. Aktuelle Ernährungsmedizin 2016; 41: 120-138
  • 10 Weyrich LS, Duchene S, Soubrier J. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 2017; 544: 357-361
  • 11 Milton K. Hunter-gatherer diets–a different perspective. Am J Clin Nutr 2000; 71: 665-667
  • 12 Milton K. Back to basics: why foods of wild primates have relevance for modern human health. Nutrition 2000; 16: 480-483
  • 13 Konner M, Eaton SB. Paleolithic nutrition: twenty-five years later. Nutr Clin Pract 2010; 25: 594-602
  • 14 Cordain L, Eaton SB, Sebastian A. et al. Origins and evolution of the Western-Diet: health implications for the 21st century. Am J Clin Nutr 2005; 81: 341-354
  • 15 van Woudenbergh GJ, Theofylaktopoulou D, Kuijsten A. et al. Adapted dietary inflammatory index and its association with a summary score for low-grade inflammation and markers of glucose metabolism: the Cohort study on Diabetes and Atherosclerosis Maastricht (CODAM) and the Hoorn study. Am J Clin Nutr 2013; 98: 1533-1542
  • 16 Wölber J. Zuckerreduktion zur Prävention von Zahnerkrankungen – warum und wie?. Aktuelle Ernährungsmedizin 2018; 43: 76-79
  • 17 Prior RL, Gu L, Wu X. et al. Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr 2007; 26: 170-181
  • 18 Rubner M. Nahrungsmittel und Ernaehrungskunde. 2. vermehrte Auflage.. Stuttgart: Verlag Ernst Heinrich Moritz; 1904
  • 19 Ströhle A, Wolters M, Hahn A. Präventives Potenzial von Ballaststoffen-Ernährungsphysiologie und Epidemiologie. Aktuelle Ernährungsmedizin 2018; 43: 179-200
  • 20 Feinman RD, Pogozelski WK, Astrup A. et al. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition 2015; 31: 1-13
  • 21 NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016; 387: 1377-1396
  • 22 Bosma-den Boer MM, van Wetten M-L, Pruimboom L. Chronic inflammatory diseases are stimulated by current lifestyle: how diet, stress levels and medication prevent our body from recovering. Nutr Metab (Lond) 2012; 9: 32
  • 23 Pappas C, Kandaraki EA, Tsirona S. et al. Postprandial dysmetabolism: Too early or too late?. Hormones (Athens) 2016; 15: 321-344
  • 24 Chakrabarti P, Kim JY, Singh M. et al. Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway. Mol Cell Biol 2013; 33: 3659-3666
  • 25 Basaranoglu M, Basaranoglu G, Sabuncu T. et al. Fructose as a key player in the development of fatty liver disease. World J Gastroenterol 2013; 19: 1166-1172
  • 26 Jenkins DJ, Kendall CW, Popovich DG. et al. Effect of a very-high-fiber vegetable, fruit, and nut diet on serum lipids and colonic function. Metab Clin Exp 2001; 50: 494-503
  • 27 Abid A, Taha O, Nseir W. et al. Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. J Hepatol 2009; 51: 918-924
  • 28 Deutsche Gesellschaft für Ernährung. 13. DGE-Ernährungsbericht 2016. Im Internet (Stand: 10.03.2020): https://www.dge.de/wissenschaft/ernaehrungsberichte/13-dge-ernaehrungsbericht
  • 29 Miller WD. The Micro-organisms of the human Mouth: the local and general Diseases which are caused by them. Basel, München, Paris, London, New York, Sydney: S. Karger; 1890
  • 30 Kearns CE, Glantz SA, Schmidt LA. Sugar industry influence on the scientific agenda of the National Institute of Dental Researchʼs 1971 National Caries Program: a historical analysis of internal documents. PLoS Med 2015; 12: e1001798
  • 31 Splieth CH, Santamaria RM, Basner R. et al. 40-Year Longitudinal Caries Development in German Adolescents in the Light of New Caries Measures. Caries Res 2019; 53: 609-616
  • 32 Bernabé E, Vehkalahti MM, Sheiham A. et al. The Shape of the Dose-Response Relationship between Sugars and Caries in Adults. J Dent Res 2016; 95: 167-172
  • 33 Kristoffersson K, Birkhed D. Effects of partial sugar restriction for 6 weeks on numbers of Streptococcus mutans in saliva and interdental plaque in man. Caries Res 1987; 21: 79-86
  • 34 Wennerholm K, Birkhed D, Emilson CG. Effects of sugar restriction on Streptococcus mutans and Streptococcus sobrinus in saliva and dental plaque. Caries Res 1995; 29: 54-61
  • 35 Joury E, Al-Kaabi R, Tappuni AR. Constructing public health policies in post crisis countries: lessons to learn from the associations between free-sugars consumption and diabetes, obesity and dental caries before, during and after sanctions in Iraq. Z Gesundh Wiss 2016; 24: 563-569
  • 36 Marsh PD, Devine DA. How is the development of dental biofilms influenced by the host?. J Clin Periodontol 2011; 38 (Suppl. 11) 28-35
  • 37 Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol 2014; 29: 248-257
  • 38 Hujoel P. Dietary carbohydrates and dental-systemic diseases. J Dent Res 2009; 88: 490-502
  • 39 Watt RG, Daly B, Allison P. et al. Ending the neglect of global oral health: time for radical action. Lancet 2019; 394: 261-272
  • 40 DiNicolantonio JJ, OʼKeefe JH, Wilson WL. Sugar addiction: is it real? A narrative review. Br J Sports Med 2018; 52: 910-913
  • 41 Schwendicke F, Thomson WM, Broadbent JM. et al. Effects of Taxing Sugar-Sweetened Beverages on Caries and Treatment Costs. J Dent Res 2016; 95: 1327-1332
  • 42 Simopoulos AP. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016; 8: 128
  • 43 Adam O. Ernährungsmedizinische Aspekte in der Rheumatologie. Aktuelle Ernährungsmedizin 2017; 42: 123-138
  • 44 Giacaman RA, Muñoz-Sandoval C. Cariogenicity of different commercially available bovine milk types in a biofilm caries model. Pediatr Dent 2014; 36: 1E-6E
  • 45 Chee B, Park B, Fitzsimmons T. et al. Omega-3 fatty acids as an adjunct for periodontal therapy-a review. Clin Oral Investig 2016; 20: 879-894
  • 46 Kruse AB, Kowalski CD, Leuthold S. et al. What is the impact of the adjunctive use of omega-3 fatty acids in the treatment of periodontitis? A systematic review and meta-analysis. Lipids Health Dis 2020; 19: 100
  • 47 Chen G-C, Zhang Z, van Dam RM. et al. Nonlinear relation between animal protein intake and risk of type 2 diabetes: a dose-response meta-analysis of prospective studies. Am J Clin Nutr 2017; 105: 1014-1016
  • 48 Staufenbiel I, Weinspach K, Förster G. et al. Periodontal conditions in vegetarians: a clinical study. Eur J Clin Nutr 2013; 67: 836-840
  • 49 Salazar CR, Laniado N, Mossavar-Rahmani Y. et al. Better-quality diet is associated with lower odds of severe periodontitis in US Hispanics/Latinos. J Clin Periodontol 2018; 45: 780-790
  • 50 Fuhrman J, Sarter B, Glaser D. et al. Changing perceptions of hunger on a high nutrient density diet. Nutr J 2010; 9: 51
  • 51 Graziani F, Discepoli N, Gennai S. et al. The effect of twice daily kiwifruit consumption on periodontal and systemic conditions before and after treatment: A randomized clinical trial. J Periodontol 2018; 89: 285-293
  • 52 Staudte H, Sigusch BW, Glockmann E. Grapefruit consumption improves vitamin C status in periodontitis patients. Br Dent J 2005; 199: 213-217
  • 53 Woelber JP, Tennert C. Chapter 13: Diet and Periodontal Diseases. Monogr Oral Sci 2020; 28: 125-133
  • 54 Ebersole JL, Lambert J, Bush H. et al. Serum Nutrient Levels and Aging Effects on Periodontitis. Nutrients 2018; 10: 1986 doi:10.3390/nu10121986
  • 55 Machado V, Lobo S, Proença L. et al. Vitamin D and Periodontitis: A Systematic Review and Meta-Analysis. Nutrients 2020; 12: 2177 doi:10.3390/nu12082177
  • 56 Cagetti MG, Wolf TG, Tennert C. et al. The Role of Vitamins in Oral Health. A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2020; 17: 938 doi:10.3390/ijerph17030938
  • 57 Lippert F. Chapter 3: Macroelements: Ca, Na, K, P, Cl. Monogr Oral Sci 2020; 28: 22-31 doi:10.1159/000455369
  • 58 Bergel E, Gibbons L, Rasines MG. et al. Maternal calcium supplementation during pregnancy and dental caries of children at 12 years of age: follow-up of a randomized controlled trial. Acta Obstet Gynecol Scand 2010; 89: 1396-1402
  • 59 Rosier BT, Buetas E, Moya-Gonzalvez EM. et al. Nitrate as a potential prebiotic for the oral microbiome. Sci Rep 2020; 10: 12895
  • 60 Doel JJ, Hector MP, Amirtham CV. et al. Protective effect of salivary nitrate and microbial nitrate reductase activity against caries. Eur J Oral Sci 2004; 112: 424-428
  • 61 Jockel-Schneider Y, Goßner SK, Petersen N. et al. Stimulation of the nitrate-nitrite-NO-metabolism by repeated lettuce juice consumption decreases gingival inflammation in periodontal recall patients: a randomized, double-blinded, placebo-controlled clinical trial. J Clin Periodontol 2016; 43: 603-608
  • 62 Liu C-Y, Hsu Y-H, Wu M-T. et al. Cured meat, vegetables, and bean-curd foods in relation to childhood acute leukemia risk: a population based case-control study. BMC Cancer 2009; 9: 15
  • 63 Widén C, Coleman M, Critén S. et al. Consumption of bilberries controls gingival inflammation. Int J Mol Sci 2015; 16: 10665-10673
  • 64 Fung TT, van Dam RM, Hankinson SE. et al. Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies. Ann Intern Med 2010; 153: 289-298
  • 65 Seidelmann SB, Claggett B, Cheng S. et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health 2018; 3: e419-e428
  • 66 Petersen PE, Bourgeois D, Ogawa H. et al. The global burden of oral diseases and risks to oral health. Bull World Health Organ 2005; 83: 661-669
  • 67 Murray CJ, Abraham J, Ali MK. et al. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA 2013; 310: 591-606
  • 68 Rodriguez-Mateos A, Rendeiro C, Bergillos-Meca T. et al. Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am J Clin Nutr 2013; 98: 1179-1191