Anästhesiol Intensivmed Notfallmed Schmerzther 2022; 57(01): 41-51
DOI: 10.1055/a-1324-0627
Topthema
CME-Fortbildung

Mobilisation auf Intensivstationen: Intensivpflegezimmer und Medizintechnik können helfen

Mobilization of Intensive Care Unit Patients: How Can the ICU Rooms and Modern Medical Equipment Help?
Julius J. Grunow
,
Peter Nydahl
,
Stefan J. Schaller

Zusammenfassung

(Früh-)Mobilisation ist ein wichtiges Element auf der Intensivstation – es dient der Prävention und Therapie der durch eine kritische Erkrankung verursachten Einschränkungen der körperlichen Funktion. Aufgrund diverser Barrieren werden die aktuellen Leitlinien-Ziele aber nicht immer erreicht. In diesem Beitrag geht es um die Integration des Intensivpflegezimmers und moderner Medizintechnik in die Frühmobilisation zur Überwindung dieser Barrieren.

Abstract

Intensive Care Unit patients frequently develop physical impairments, mainly weakness, during their ICU stay. Early mobilization is a central therapeutic element in patients on an intensive care unit to prevent and treat these physical sequelae to conserve independence. Different barriers such as lacking patient motivation, insufficient staffing and fear of dislocating vascular access or the airway led to insufficient implementation of current guideline recommendation. Integration of modern medical equipment as well as the adequate ICU room concepts is a promising option to overcome those barriers.

Allowing for sufficient free floor area when planning an ICU – maybe through the integration of mobile elements – is likely to ease early mobilization and should be thoroughly considered when building or remodeling an ICU. Furthermore, wireless monitoring has been deemed necessary and could potentially decrease the fear regarding dislocation due to less cable or lines that need to be managed during mobilization.

Virtual reality is a rapidly evolving field and while in ICU patients it could so far only show to reduce stress level it has been shown to improve rehabilitation in stroke patients. It is imaginable that its integration in mobilization on the ICU will boost patientsʼ motivation. Trials are still outstanding.

Robotics integrated in the ICU bed or in form of exoskeletons are currently being piloted in critically ill patients with many expected benefits due to the ability to support patients tailored to their individual needs, reduce staff requirements as the robotics will cover support function and improved duration and intensity of mobilization as for example the patient can be ambulated without ever leaving the bed, which also translates into potentially reduced fear regarding dislocation of the airway or vascular access.

Currently, evidence on the benefits regarding the integration of ICU rooms as well as modern medical technology into the process of (early) mobilization is lacking but especially in the sector of robotics a huge potential is to be suspected.

Kernaussagen
  • (Früh-)Mobilisation ist sicher und für Patient*innen auf der Intensivstation empfohlen.

  • Häufige Barrieren für die (Früh-)Mobilisation sind fehlende Motivation der Patient*innen, limitierte Personalressourcen und die Sorge vor Dislokationen, z. B. des Atemwegs, verschiedener Gefäßzugänge oder anderer Katheter.

  • (Früh-)Mobilisation sollte bei der Planung einer Intensivstation bedacht werden und die freie Fläche in den Behandlungszimmern dementsprechend optimiert werden.

  • Die Integration von Virtual Reality in die (Früh-)Mobilisation von Intensivstationspatient*innen ist eine vielversprechende Option für die Zukunft.

  • Die Nutzung von Robotik im Rahmen der (Früh-)Mobilisation hat das Potenzial, viele der vorhandenen Barrieren zu adressieren und darüber die (Früh-)Mobilisationspraxis zu verbessern.

  • Zum aktuellen Zeitpunkt fehlt die Evidenz zum Einfluss der freien Fläche im Behandlungszimmer sowie der Nutzung von Virtual Reality und Robotik auf die (Früh-)Mobilisation bei kritisch kranken Patient*innen.



Publication History

Article published online:
12 January 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Destatis. Grunddaten der Krankenhäuser – Fachserie 12 Reihe 6.1.1 – 2019. Wiesbaden: Statistisches Bundesamt; 2021: 84
  • 2 Zimmerman JE, Kramer AA, Knaus WA. Changes in hospital mortality for United States intensive care unit admissions from 1988 to 2012. Crit Care 2013; 17: R81
  • 3 Needham DM, Davidson J, Cohen H. et al. Improving long-term outcomes after discharge from intensive care unit: report from a stakeholdersʼ conference. Crit Care Med 2012; 40: 502-509
  • 4 Fan E, Cheek F, Chlan L. et al. An official American Thoracic Society Clinical Practice guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med 2014; 190: 1437-1446
  • 5 Appleton RT, Kinsella J, Quasim T. The incidence of intensive care unit-acquired weakness syndromes: A systematic review. J Intensive Care Soc 2015; 16: 126-136
  • 6 Weber-Carstens S, Deja M, Koch S. et al. Risk factors in critical illness myopathy during the early course of critical illness: a prospective observational study. Crit Care 2010; 14: R119
  • 7 Fan E, Dowdy DW, Colantuoni E. et al. Physical complications in acute lung injury survivors: a two-year longitudinal prospective study. Crit Care Med 2014; 42: 849-859
  • 8 Hermans G, Van Mechelen H, Clerckx B. et al. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis. Am J Respir Crit Care Med 2014; 190: 410-420
  • 9 Van Aerde N, Meersseman P, Debaveye Y. et al. Five-year impact of ICU-acquired neuromuscular complications: a prospective, observational study. Intensive Care Med 2020; 46: 1184-1193
  • 10 Herridge MS, Cheung AM, Tansey CM. et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 2003; 348: 683-693
  • 11 Herridge MS, Tansey CM, Matte A. et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 2011; 364: 1293-1304
  • 12 Kamdar BB, Huang M, Dinglas VD. et al. Joblessness and lost earnings after acute respiratory distress syndrome in a 1-year national multicenter study. Am J Respir Crit Care Med 2017; 196: 1012-1020
  • 13 Fried TR, Bradley EH, Towle VR. et al. Understanding the treatment preferences of seriously ill patients. N Engl J Med 2002; 346: 1061-1066
  • 14 Bein T, Bischoff M, Bruckner U. et al. S2e guideline: positioning and early mobilisation in prophylaxis or therapy of pulmonary disorders: Revision 2015: S2e guideline of the German Society of Anaesthesiology and Intensive Care Medicine (DGAI). Anaesthesist 2015; 64 (Suppl. 01) 1-26
  • 15 Schaller SJ, Anstey M, Blobner M. et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet 2016; 388: 1377-1388
  • 16 Schweickert WD, Pohlman MC, Pohlman AS. et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 2009; 373: 1874-1882
  • 17 Fuest K, Schaller SJ. [Early mobilisation on the intensive care unit: What we know]. Med Klin Intensivmed Notfmed 2019; 114: 759-764
  • 18 Scheffenbichler FT, Teja B, Wongtangman K. et al. Effects of the level and duration of mobilization therapy in the surgical ICU on the loss of the ability to live independently: an international prospective cohort study. Crit Care Med 2021; 49: e247-e257
  • 19 Waldauf P, Jiroutková K, Krajčová A. et al. Effects of rehabilitation interventions on clinical outcomes in critically ill patients. Crit Care Med 2020; 48: 1055-1065
  • 20 Nydahl P, Ruhl AP, Bartoszek G. et al. Early mobilization of mechanically ventilated patients: a 1-day point-prevalence study in Germany. Crit Care Med 2014; 42: 1178-1186
  • 21 Timenetsky KT, Neto AS, Assuncao MSC. et al. Mobilization practices in the ICU: A nationwide 1-day point-prevalence study in Brazil. PLoS One 2020; 15: e0230971
  • 22 Hermes C, Nydahl P, Blobner M. et al. Assessment of mobilization capacity in 10 different ICU scenarios by different professions. PLoS One 2020; 15: e0239853
  • 23 Dubb R, Nydahl P, Hermes C. et al. Barriers and strategies for early mobilization of patients in intensive care units. Ann Am Thorac Soc 2016; 13: 724-730
  • 24 Nydahl P, Sricharoenchai T, Chandra S. et al. Safety of patient mobilization and rehabilitation in the intensive care unit. Systematic review with meta-analysis. Ann Am Thorac Soc 2017; 14: 766-777
  • 25 Schaller SJ, Stauble CG, Suemasa M. et al. The German Validation Study of the Surgical Intensive Care Unit Optimal Mobility Score. J Crit Care 2016; 32: 201-206
  • 26 Hodgson CL, Stiller K, Needham DM. et al. Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults. Crit Care 2014; 18: 658
  • 27 Luetz A, Weiss B, Penzel T. et al. Feasibility of noise reduction by a modification in ICU environment. Physiol Meas 2016; 37: 1041-1055
  • 28 Poncette AS, Spies C, Mosch L. et al. Clinical requirements of future patient monitoring in the intensive care unit: qualitative study. JMIR Med Inform 2019; 7: e13064
  • 29 Downey C, Ng S, Jayne D. et al. Reliability of a wearable wireless patch for continuous remote monitoring of vital signs in patients recovering from major surgery: a clinical validation study from the TRaCINg trial. BMJ Open 2019; 9: e031150
  • 30 Liu Y, Liu C, Gao M. et al. Evaluation of a wearable wireless device with artificial intelligence, iThermonitor WT705, for continuous temperature monitoring for patients in surgical wards: a prospective comparative study. BMJ Open 2020; 10: e039474
  • 31 Daskivich TJ, Houman J, Lopez M. et al. Association of wearable activity monitors with assessment of daily ambulation and length of stay among patients undergoing major surgery. JAMA Netw Open 2019; 2: e187673
  • 32 Fazio S, Doroy A, Da Marto N. et al. Quantifying mobility in the ICU: Comparison of electronic health record documentation and accelerometer-based sensors to clinician-annotated video. Crit Care Explor 2020; 2: e0091
  • 33 Ma AJ, Rawat N, Reiter A. et al. Measuring patient mobility in the ICU Using a novel noninvasive sensor. Crit Care Med 2017; 45: 630-636
  • 34 Rapoliene J, Endzelyte E, Jaseviciene I. et al. Stroke patients motivation influence on the effectiveness of occupational therapy. Rehabil Res Pract 2018; 2018: 9367942
  • 35 Zhang B, Li D, Liu Y. et al. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: A systematic review and meta-analysis. J Adv Nurs 2021; 77: 3255-3273
  • 36 Ulrich RS, Cordoza M, Gardiner SK. et al. ICU patient family stress recovery during breaks in a hospital garden and indoor environments. HERD 2020; 13: 83-102
  • 37 Pugh R. COVID-19: Therapeutic Benefits of ‚Secret‘ ICU Gardens. Medscape. May 22, 2020. Im Internet (Stand: 19.10.2021): http://www.medscape.com/viewarticle/930984
  • 38 OACIS Group. Concept ICU Bed with Leg Press. 25.07.2017. Im Internet (Stand: 19.10.2021): http://www.youtube.com/watch?v=p4jvEZbcnzM
  • 39 Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl) 2016; 9: 455-466
  • 40 Sommers J, Wieferink DC, Dongelmans DA. et al. Body weight-supported bedside treadmill training facilitates ambulation in ICU patients: An interventional proof of concept study. J Crit Care 2017; 41: 150-155
  • 41 Kwakman RCH, Sommers J, Horn J. et al. Steps to recovery: body weight-supported treadmill training for critically ill patients: a randomized controlled trial. Trials 2020; 21: 409