Rofo 2021; 193(07): 787-796
DOI: 10.1055/a-1324-4010
Review

PI-RADS 2.1 – Befundinterpretation: Die wichtigsten Neuerungen und ihre klinischen Implikationen

Article in several languages: English | deutsch
1   Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
,
Heinz-Peter Schlemmer
2   Radiology, German Cancer Research Centre, Heidelberg, Germany
,
1   Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
,
Kolja M. Thierfelder
1   Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
› Author Affiliations

Zusammenfassung

Hintergrund Die multiparametrische Magnetresonanztomografie (MRT) der Prostata übernimmt inzwischen eine zentrale Rolle in der Diagnostik bei Patienten mit Verdacht auf Prostatakarzinom. Zum Erfolg der Methode trägt die zunehmende Verbreitung der zuletzt im Jahr 2019 auf die Version 2.1 aktualisierte Leitlinie zur Standardisierung von Bildakquisition, Auswertung und Befundung (Prostate Imaging – Reporting and Data System, PI-RADS) bei.

Material und Methoden Die zentralen Neuerungen der im Frühjahr 2019 vorgestellten PI-RADS-Version 2.1 gegenüber der Vorgängerversion PI-RADS 2.0 werden vorgestellt und bezüglich ihrer klinischen Implikationen diskutiert.

Ergebnisse Die PI-RADS-Version 2.1 zielt darauf ab, die Anwendung zu vereinfachen, ohne dabei das Grundkonzept der dominanten Sequenz (DWI in der peripheren Zone, T2 in der Transitionszone) zu ändern. Von besonderer Bedeutung sind die stärkere Gewichtung der Diffusionsbildgebung in der Transitionszone, der nun obligatorische hohe b-Wert von mindestens 1400 s/mm2 und neue Hinweise zur Beurteilung der zentralen Zone und des anterioren fibromuskulären Stromas.

Schlussfolgerung Die 2019 veröffentlichte PI-RADS-Version 2.1 adressiert verschiedene Änderungen, die sowohl Untersuchungstechnik als auch Befundung betreffen. Inwieweit sich damit die Ziele der Reduktion der Interreader-Variabilität und der Erhöhung der Detektionsrate in der Transitionszone erreichen lassen, müssen prospektive klinische Studien zeigen.

Kernaussagen:

  • Die neue PI-RADS-Version 2.1 umfasst einzelne Änderungen bezüglich Befundinterpretation und Untersuchungstechnik.

  • In der Transitionszone wird die Rolle der Diffusionsbildgebung gestärkt.

  • Ein ultrahoher b-Wert von mindestens 1400 s/mm2 ist nach PI-RADS 2.1 obligat.

  • Die biparametrische MRT wird nicht zur generellen Anwendung empfohlen.

Zitierweise

  • Beyer T, Schlemmer H, Weber M et al. PI-RADS 2.1 – Image Interpretation: The Most Important Updates and Their Clinical Implications. Fortschr Röntgenstr 2021; 193: 787 – 796



Publication History

Received: 04 March 2020

Accepted: 10 November 2020

Article published online:
21 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bray F, Ferlay J, Soerjomataram I. et al Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424
  • 2 Lam TBL, MacLennan S, Willemse PM. et al EAU-EANM-ESTRO-ESUR-SIOG Prostate Cancer Guideline Panel Consensus Statements for Deferred Treatment with Curative Intent for Localised Prostate Cancer from an International Collaborative Study (DETECTIVE Study). Eur Urol 2019; 76: 790-813
  • 3 Kim R, Kim CK, Park JJ. et al Prognostic Significance for Long-Term Outcomes Following Radical Prostatectomy in Men with Prostate Cancer: Evaluation with Prostate Imaging Reporting and Data System Version 2. Korean J Radiol 2019; 20: 256-264
  • 4 Schlemmer HP. Multiparametrische MR-Bildgebung beim Prostatakarzinom. Radiologie up2date 2017; 17: 43-60
  • 5 Barentsz JO, Richenberg J, Clements R. et al ESUR prostate MR guidelines 2012. Eur Radiol 2012; 22: 746-757
  • 6 Weinreb JC, Barentsz JO, Choyke PL. et al PI-RADS Prostate Imaging – Reporting and Data System: 2015, Version 2. Eur Urol 2016; 69: 16-40
  • 7 Rosenkrantz AB, Ginocchio LA, Cornfeld D. et al Interobserver Reproducibility of the PI-RADS Version 2 Lexicon: A Multicenter Study of Six Experienced Prostate Radiologists. Radiology 2016; 280: 793-804
  • 8 Borofsky S, George AK, Gaur S. et al What Are We Missing? False-Negative Cancers at Multiparametric MR Imaging of the Prostate. Radiology 2018; 286: 186-195
  • 9 Kido A, Tamada T, Kanomata N. et al Multidimensional analysis of clinicopathological characteristics of false-negative clinically significant prostate cancers on multiparametric MRI of the prostate in Japanese men. Jpn J Radiol 2019; 37: 154-164
  • 10 Muller BG, Shih JH, Sankineni S. et al Prostate Cancer: Interobserver Agreement and Accuracy with the Revised Prostate Imaging Reporting and Data System at Multiparametric MR Imaging. Radiology 2015; 277: 741-750
  • 11 Rosenkrantz AB, Oto A, Turkbey B. et al Prostate Imaging Reporting and Data System (PI-RADS), Version 2: A Critical Look. Am J Roentgenol 2016; 206: 1179-1183
  • 12 Turkbey B, Rosenkrantz AB, Haider MA. et al Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol 2019; 76: 340-351
  • 13 Barrett T, Rajesh A, Rosenkrantz AB. et al PI-RADS version 2.1: one small step for prostate MRI. Clin Radiol 2019; 74: 841-852
  • 14 Le Bihan D, Breton E, Lallemand D. et al Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168: 497-505
  • 15 Barrett T, Priest AN, Lawrence EM. et al Ratio of Tumor to Normal Prostate Tissue Apparent Diffusion Coefficient as a Method for Quantifying DWI of the Prostate. Am J Roentgenol 2015; 205: W585-W593
  • 16 Jensen JH, Helpern JA, Ramani A. et al Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53: 1432-1440
  • 17 Rosenkrantz AB, Sigmund EE, Johnson G. et al Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology 2012; 264: 126-135
  • 18 DeLano MC, Cooper TG, Siebert JE. et al High-b-value diffusion-weighted MR imaging of adult brain: image contrast and apparent diffusion coefficient map features. AJNR Am J Neuroradiol 2000; 21: 1830-1836
  • 19 Kim CK, Park BK, Kim B. High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1000 and 2000 s/mm2 . Am J Roentgenol 2010; 194: W33-W37
  • 20 Agarwal HK, Mertan FV, Sankineni S. et al Optimal high b-value for diffusion weighted MRI in diagnosing high risk prostate cancers in the peripheral zone. J Magn Reson Imaging 2017; 45: 125-131
  • 21 Syer TJ, Godley KC, Cameron D. et al The diagnostic accuracy of high b-value diffusion- and T2-weighted imaging for the detection of prostate cancer: a meta-analysis. Abdom Radiol (NY) 2018; 43: 1787-1797
  • 22 Metens T, Miranda D, Absil J. et al What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3T. Eur Radiol 2012; 22: 703-709
  • 23 Ohgiya Y, Suyama J, Seino N. et al Diagnostic accuracy of ultra-high-b-value 3.0-T diffusion-weighted MR imaging for detection of prostate cancer. Clin Imaging 2012; 36: 526-531
  • 24 Jambor I. Optimization of prostate MRI acquisition and post-processing protocol: a pictorial review with access to acquisition protocols. Acta Radiol Open 2017; 6: 2058460117745574
  • 25 Panebianco V, Giganti F, Kitzing YX. et al An update of pitfalls in prostate mpMRI: a practical approach through the lens of PI-RADS v. 2 guidelines. Insights Imaging 2018; 9: 87-101
  • 26 Ream JM, Doshi AM, Dunst D. et al Dynamic contrast-enhanced MRI of the prostate: An intraindividual assessment of the effect of temporal resolution on qualitative detection and quantitative analysis of histopathologically proven prostate cancer. J Magn Reson Imaging 2017; 45: 1464-1475
  • 27 Boesen L, Nørgaard N, Løgager V. et al Assessment of the Diagnostic Accuracy of Biparametric Magnetic Resonance Imaging for Prostate Cancer in Biopsy-Naive Men: The Biparametric MRI for Detection of Prostate Cancer (BIDOC) Study. JAMA Netw Open 2018; 1: e180219
  • 28 Jambor I, Boström PJ, Taimen P. et al Novel biparametric MRI and targeted biopsy improves risk stratification in men with a clinical suspicion of prostate cancer (IMPROD Trial). J Magn Reson Imaging 2017; 46: 1089-1095
  • 29 Gupta RT, Mehta KA, Turkbey B. et al PI-RADS: Past, present, and future. J Magn Reson Imaging 2019;
  • 30 Greer MD, Shih JH, Lay N. et al Validation of the Dominant Sequence Paradigm and Role of Dynamic Contrast-enhanced Imaging in PI-RADS Version 2. Radiology 2017; 285: 859-869
  • 31 Krishna S, McInnes M, Lim C. et al Comparison of Prostate Imaging Reporting and Data System versions 1 and 2 for the Detection of Peripheral Zone Gleason Score 3 + 4 = 7 Cancers. Am J Roentgenol 2017; 209: W365-W373
  • 32 Rosenkrantz AB, Babb JS, Taneja SS. et al Proposed Adjustments to PI-RADS Version 2 Decision Rules: Impact on Prostate Cancer Detection. Radiology 2017; 283: 119-129
  • 33 Caglic I, Barrett T. Optimising prostate mpMRI: prepare for success. Clin Radiol 2019; 74: 831-840
  • 34 Iwazawa J, Mitani T, Sassa S. et al Prostate cancer detection with MRI: is dynamic contrast-enhanced imaging necessary in addition to diffusion-weighted imaging. Diagn Interv Radiol 2011; 17: 243-248
  • 35 Padhani AR, Weinreb J, Rosenkrantz AB. et al Prostate Imaging-Reporting and Data System Steering Committee: PI-RADS v2 Status Update and Future Directions. Eur Urol 2019; 75: 385-396
  • 36 Scialpi M, Martorana E, Scialpi P. et al Round table: arguments in supporting abbreviated or biparametric MRI of the prostate protocol. Abdom Radiol (NY) 2020;
  • 37 Scialpi M, Aisa MC, D‘Andrea A. et al Simplified Prostate Imaging Reporting and Data System for Biparametric Prostate MRI: A Proposal. Am J Roentgenol 2018; 211: 379-382
  • 38 Vargas HA, Akin O, Franiel T. et al Normal central zone of the prostate and central zone involvement by prostate cancer: clinical and MR imaging implications. Radiology 2012; 262: 894-902
  • 39 Hansford BG, Karademir I, Peng Y. et al Dynamic contrast-enhanced MR imaging features of the normal central zone of the prostate. Acad Radiol 2014; 21: 569-577
  • 40 Cohen RJ, Shannon BA, Phillips M. et al Central zone carcinoma of the prostate gland: a distinct tumor type with poor prognostic features. J Urol 2008; 179: 1762-1767 ; discussion 1767.
  • 41 Ward E, Baad M, Peng Y. et al Multi-parametric MR imaging of the anterior fibromuscular stroma and its differentiation from prostate cancer. Abdom Radiol (NY) 2017; 42: 926-934
  • 42 Bouyé S, Potiron E, Puech P. et al Transition zone and anterior stromal prostate cancers: zone of origin and intraprostatic patterns of spread at histopathology. Prostate 2009; 69: 105-113
  • 43 McNeal JE, Redwine EA, Freiha FS. et al Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol 1988; 12: 897-906
  • 44 Kayhan A, Fan X, Oommen J. et al Multi-parametric MR imaging of transition zone prostate cancer: Imaging features, detection and staging. World J Radiol 2010; 2: 180-187
  • 45 Tamada T, Kido A, Takeuchi M. et al Comparison of PI-RADS version 2 and PI-RADS version 2.1 for the detection of transition zone prostate cancer. Eur J Radiol 2019; 121: 108704
  • 46 Søndergaard G, Vetner M, Christensen PO. Periferal cystic hyperplasia of the prostate gland. Acta Pathol Microbiol Immunol Scand A 1987; 95: 137-139
  • 47 Hansen NL, Barrett T, Koo B. et al The influence of prostate-specific antigen density on positive and negative predictive values of multiparametric magnetic resonance imaging to detect Gleason score 7–10 prostate cancer in a repeat biopsy setting. BJU Int 2017; 119: 724-730
  • 48 Bonekamp D, Kohl S, Wiesenfarth M. et al Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values. Radiology 2018; 289: 128-137
  • 49 Kaufmann S, Bedke J, Gatidis S. et al Prostate cancer gene 3 (PCA3) is of additional predictive value in patients with PI-RADS grade III (intermediate) lesions in the MR-guided re-biopsy setting for prostate cancer. World J Urol 2016; 34: 509-515