Subscribe to RSS
DOI: 10.1055/a-1328-6436
Dienylation of Unfunctionalized Arenes with 1,6-Diynes via Rhodium-Catalyzed Directing-Group-Free C–H Bond Activation
This work was supported partly by a Grant-in-Aid for Scientific Research (No. JP19H00893 to K.T. and No. JP20K22521 to Y.N.) from the Japan Society for the Promotion of Science (JSPS, Japan).
Abstract
It has been established that the dienylation of unfunctionalized arenes with 1,6-diynes, possessing aryl groups at the diyne termini, proceeds to give the corresponding dienylated arenes in the presence of a catalytic amount of an electron-deficient cyclopentadienyl rhodium(III) complex, [CpERhCl2]2, and a stoichiometric amount of silver carbonate. Experimental and theoretical mechanistic studies revealed that a CpERh(I) complex generated in situ might catalyze the present dienylation reaction.
Key words
alkynes - dienylation - directing group-free C–H bond activation - rhodium - unfunctionalized arenesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1328-6436.
- Supporting Information
Publication History
Received: 13 November 2020
Accepted after revision: 03 December 2020
Accepted Manuscript online:
03 December 2020
Article published online:
11 January 2021
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Boyarskiy VP, Ryabukhin DS, Bokach NA, Vasilyev AV. Chem. Rev. 2016; 116: 5894
- 1b Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
- 1c De Haro T, Nevado C. In Comprehensive Organic synthesis, 2nd ed. Knochel P. Elsevier; Amsterdam: 2014: 1621
- 1d Kitamura T. In Transition-Metal-Mediated Aromatic Ring Construction, Chap. 13 . Tanaka K. Wiley; Hoboken: 2013: 457
- 1e Kitamura T. Eur. J. Org. Chem. 2009; 1111
- 1f Shen HC. Tetrahedron 2008; 64: 3885
- 1g Nevado C, Echavarren A. Synthesis 2005; 167
- 2 Tanaka K, Otake Y, Wada A, Hirano M. Org. Lett. 2007; 9: 2203
- 3 Tsuchikama K, Kuwata Y, Tahara Y, Yoshinami Y, Shibata T. Org. Lett. 2007; 9: 3097
- 4a Tanaka K, Otake Y, Sagae H, Noguchi K, Hirano M. Angew. Chem. Int. Ed. 2008; 47: 1312 ; see also ref. 3
- 4b For the reactions of aryamides and acrylamides with 1,6-diynes, see: Shibata Y, Otake Y, Hirano M, Tanaka K. Org. Lett. 2009; 11: 689
- 5a Aubert C, Betschmann P, Eichberg MJ, Gandon V, Heckrodt TJ, Lehmann J, Malacria M, Masjost B, Paredes E, Vollhardt KP. C, Whitener GD. Chem. Eur. J. 2007; 13: 7443
- 5b Aubert C, Gandon V, Geny A, Heckrodt TJ, Malacria M, Paredes E, Vollhardt KP. C. Chem. Eur. J. 2007; 13: 7466
- 6a Ghosh K, Mihara G, Nishii Y, Miura M. Chem. Lett. 2019; 48: 148
- 6b Chen H, Wedi P, Meyer T, Tavakoli G, Van Gemmeren M. Angew. Chem. Int. Ed. 2018; 57: 2497
- 6c Wang P, Verma P, Xia G, Shi J, Qiao JX, Tao S, Cheng PT. W, Poss MA, Farmer ME, Yeung K.-S, Yu J.-Q. Nature 2017; 551: 489
- 6d Vora HU, Silvestri AP, Engelin CJ, Yu J.-Q. Angew. Chem. Int. Ed. 2014; 53: 2683
- 6e Kubota A, Emmert MH, Sanford MS. Org. Lett. 2012; 14: 1760
- 6f Patureau FW, Nimphius C, Glourius F. Chem. Asian J. 2012; 7: 1208
- 7 Shibata Y, Tanaka K. Angew. Chem. Int. Ed. 2011; 50: 10917
- 8a Hoshino Y, Shibata Y, Tanaka K. Adv. Synth. Catal. 2014; 356: 1577
- 8b Fukui M, Hoshino Y, Satoh T, Miura M, Tanaka K. Adv. Synth. Catal. 2014; 356: 1638
- 8c Kudo E, Shibata Y, Yamazaki M, Masutomi K, Miyauchi Y, Fukui M, Sugiyama H, Uekusa H, Satoh T, Miura M, Tanaka K. Chem. Eur. J. 2016; 22: 14190
- 8d Fukui M, Shibata Y, Hoshino Y, Sugiyama H, Uekusa H, Noguchi K, Tanaka K. Chem. Asian J. 2016; 11: 2260
- 8e Honjo Y, Shibata Y, Kudo E, Namba T, Tanaka K. Chem. Eur. J. 2018; 24: 317
- 8f Terasawa J, Shibata Y, Fukui M, Tanaka K. Molecules 2019; 23: 3325
- 8g Honjo Y, Shibata Y, Tanaka K. Chem. Eur. J. 2019; 25: 9427
- 9a Morimoto K, Itoh M, Hirano K, Satoh T, Shibata Y, Tanaka K, Miura M. Angew. Chem. Int. Ed. 2012; 51: 5359
- 9b Itoh M, Hirano K, Satoh T, Shibata Y, Tanaka K, Miura M. J. Org. Chem. 2013; 78: 1365
- 9c Baars H, Unoh Y, Okada T, Hirano K, Satoh T, Tanaka K, Bolm C, Miura M. Chem. Lett. 2014; 43: 1782
- 9d Takahama Y, Shibata Y, Tanaka K. Chem. Eur. J. 2015; 21: 9053
- 9e Shibata Y, Kudo E, Sugiyama E, Uekusa H, Tanaka K. Organometallics 2016; 35: 1547
- 9f Takahama Y, Shibata Y, Tanaka K. Org. Lett. 2016; 18: 2934
- 9g Takahama Y, Shibata Y, Tanaka K. Chem. Lett. 2016; 45: 1177
- 9h Yoshimura R, Shibata Y, Tanaka K. J. Org. Chem. 2019; 84: 13164
- 10 Unfortunately, analytically pure dienylation products could not be isolated in this reaction.
- 11a Lin W, Li W, Lu D, Su F, Wen T.-B, Zhang H.-J. ACS Catal. 2018; 8: 8070
- 11b Yoshimura R, Tanaka K. Chem. Eur. J. 2020; 26: 4969
- 12 Xu S, Chen K, Chen H, Yao J, Zhu X. Chem. Eur. J. 2014; 20: 16442
- 13a Yoshida K, Morimoto I, Mitsudo K, Tanaka H. Tetrahedron 2008; 64: 5800
- 13b Yoshida K, Morimoto I, Mitsudo K, Tanaka H. Tetrahedron Lett. 2008; 49: 2363
- 13c Yoshida K, Morimoto I, Mitsudo K, Tanaka H. Chem. Lett. 2007; 36: 998
- 14 The sp2 C–H bond cleavage with a cobaltacyclopentadiene is proposed in the CpCoI-catalyzed dienylation reaction shown in Scheme 1b; see ref. 5.
- 15 The rhodium(I)-catalyzed [2+2+2] cycloaddition proceeded even in the presence of a stoichiometric amount of Ag2CO3, see: Li Y, Zhu J, Zhang L, Wu Y, Gong Y. Chem. Eur. J. 2013; 19: 8294
- 16 Other than 5a and 6a, an unidentified complex mixture of products was generated.
- 17 Lian J.-J, Chen P.-C, Lin Y.-P, Ting H.-C, Liu R.-S. J. Am. Chem. Soc. 2006; 128: 11372
- 18 Shibata T, Yamashita K, Katayama E, Takagi K. Tetrahedron 2002; 58: 8661
- 19 Bao M, Lu W, Su H, Qiu L, Xu X. Org. Biomol. Chem. 2018; 16: 3258
- 20 Xu T, Yang Q, Ye W, Jiang Q, Xu Z, Chen J, Yu Z. Chem. Eur. J. 2011; 17: 10547
- 21 Kung Y.-H, Cheng Y.-S, Tai C.-C, Liu W.-S, Shin C.-C, Ma C.-C, Tsai Y.-C, Wu T.-C, Kuo M.-Y, Wu Y.-T. Chem. Eur. J. 2010; 16: 5909
- 22 Aikawa H, Tago S, Umetsu K, Haginiwa N, Asao N. Tetrahedron 2009; 65: 1774
- 23 Hu Y.-M, Lin X.-G, Zhu T, Wan J, Sun Y.-J, Zhao Q.-S, Yu T. Synthesis 2010; 3467
- 24 Nguefack J, Bolitt V, Sinou D. Tetrahedron Lett. 1996; 37: 5527
- 25 Hsieh JC, Cheng CH. Chem. Commun. 2008; 2992
- 26 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision A.03. Gaussian, Inc; Wallingford CT: 2016
- 27a Beche AD. Phys. Rev. A: At., Mol., Opt. Phys. 1988; 38: 3098
- 27b Beche AD. J. Chem. Phys. 1993; 98: 1372
- 27c Beche AD. J. Chem. Phys. 1993; 98: 5648
- 27d Lee C, Yang W, Parr RG. Phys. Rev. B: Condens. Matter Mater. Phys. 1988; 37: 785
For selected recent reviews, see:
For the reactions of aryketones with 1,6-enynes, see:
For selected recent examples of the transition-metal-catalyzed and non-directed sp2 C–H bond olefination of unfunctionalized arenes, see:
For applications of 1 in C–H bond functionalizations other than annulation reactions, see:
For examples of the CpRh(III) complex-catalyzed C–H bond functionalization, see:
The RhCl3/i-Pr2NEt catalyzed [2+2+2] cycloaddition of alkynes, in which RhCl3 would be reduced by i-Pr2NEt to afford a rhodium(I) complex, was reported, see: