RSS-Feed abonnieren
DOI: 10.1055/a-1334-8434
Technik und klinische Bedeutung des kardialen Mappings – was der Radiologe wissen sollte
Techniques and clinical application of myocardial mapping – what radiologists should knowZusammenfassung
In den letzten Jahren sind die Mapping-Techniken der kardialen MRT vermehrt in das Interesse von Forschung und klinischer Praxis gerückt. Damit kann der Radiologe magnetische (T1-, T2- und T2*-Zeiten) und histologische (Extrazellulärvolumen-Fraktion) Parameter des Myokards quantifizieren und vor allem diffuse akute und chronische Erkrankungen des Myokards besser nachweisen als mit den Standardsequenzen.
Abstract
In recent years, myocardial mapping sequences have gained substantial interest in research and clinical practice. They provide the quantification of magnetic (T1-, T2-, and T2*-values) and histological (extracellular volume fraction) myocardial parameters. Furthermore, mapping techniques allow for an improved detection of diffuse acute and chronic myocardial pathologies, which are difficult to delineate in conventional sequences. This article provides the technical background of myocardial mapping techniques and shows their clinical application for the most important cardiomyopathies.
-
Die Mapping-Techniken quantifizieren magnetische (T1-/T2-Relaxationszeiten, T2*-Zeiten) und histologische (EZV-Fraktion) Gewebeparameter des Myokards.
-
Bei ihrer Verwendung ist im Gegensatz zu den konventionellen Sequenzen der kardialen MRT (T2w Ödemsequenzen, Late-Gadolinium-Enhancement) kein gesundes Referenzgewebe zur Gewebecharakterisierung erforderlich.
-
Die Mapping-Techniken ermöglichen einen gegenüber den konventionellen Sequenzen verbesserten Nachweis akuter und chronischer, vor allem diffuser Pathologien, sind Bestandteil mehrerer diagnostischer Leitlinien und liefern wertvolle prognostische Informationen.
-
Die Mapping-Techniken ermöglichen eine der Myokardbiopsie vergleichbare Quantifizierung diffuser myokardialer Gewebsveränderungen, z. B. der Fibrose.
-
Bei ihrer Verwendung ist zu beachten, dass die Mapping-Techniken und ihre Normwerte durch Patienteneigenschaften beeinflusst werden und hersteller-, geräte- sowie softwareversionsabhängig sein können.
Schlüsselwörter
kardiales Mapping - MRT - Late-Gadolinium-Enhancement - Extrazellulärvolumen-FraktionPublikationsverlauf
Artikel online veröffentlicht:
04. Juni 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Ordovas KG, Higgins CB. Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology 2011; 261: 358-374 DOI: 10.1148/radiol.11091882.
- 2 Kim RJ, Shah DJ, Judd RM. How we perform delayed enhancement imaging. J Cardiovasc Magn Reson 2003; 5: 505-514 DOI: 10.1081/jcmr-120022267.
- 3 Luetkens JA, Voigt M, Faron A. et al. Influence of hydration status on cardiovascular magnetic resonance myocardial T1 and T2 relaxation time assessment: an intraindividual study in healthy subjects. J Cardiovasc Magn Reson 2020; 22: 63 DOI: 10.1186/s12968-020-00661-9.
- 4 Messroghli DR, Radjenovic A, Kozerke S. et al. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004; 52: 141-146 DOI: 10.1002/mrm.20110.
- 5 Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 2014; 16: 2 DOI: 10.1186/1532-429X-16-2.
- 6 Choi EY, Choi BW, Kim SA. et al. Patterns of late gadolinium enhancement are associated with ventricular stiffness in patients with advanced non-ischaemic dilated cardiomyopathy. Eur J Heart Fail 2009; 11: 573-580 DOI: 10.1093/eurjhf/hfp050.
- 7 Thirup P. Haematocrit: within-subject and seasonal variation. Sports Med 2003; 33: 231-243 DOI: 10.2165/00007256-200333030-00005.
- 8 Messroghli DR, Moon JC, Ferreira VM. et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 2017; 19: 75 DOI: 10.1186/s12968-017-0389-8.
- 9 Roy C, Slimani A, de Meester C. et al. Age and sex corrected normal reference values of T1, T2 T2* and ECV in healthy subjects at 3T CMR. J Cardiovasc Magn Reson 2017; 19: 72 DOI: 10.1186/s12968-017-0371-5.
- 10 Sado DM, Flett AS, Banypersad SM. et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012; 98: 1436-1441 DOI: 10.1136/heartjnl-2012-302346.
- 11 Nacif MS, Turkbey EB, Gai N. et al. Myocardial T1 mapping with MRI: comparison of look-locker and MOLLI sequences. J Magn Reson Imaging 2011; 34: 1367-1373 DOI: 10.1002/jmri.22753.
- 12 Messroghli DR, Plein S, Higgins DM. et al. Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution-reproducibility study. Radiology 2006; 238: 1004-1012 DOI: 10.1148/radiol.2382041903.
- 13 Piechnik SK, Ferreira VM, DallʼArmellina E. et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010; 12: 69 DOI: 10.1186/1532-429X-12-69.
- 14 Sibley CT, Noureldin RA, Gai N. et al. T1 Mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology 2012; 265: 724-732 DOI: 10.1148/radiol.12112721.
- 15 Luetkens JA, Homsi R, Sprinkart AM. et al. Incremental value of quantitative CMR including parametric mapping for the diagnosis of acute myocarditis. Eur Heart J Cardiovasc Imaging 2016; 17: 154-161 DOI: 10.1093/ehjci/jev246.
- 16 Ferreira VM, Piechnik SK, DallʼArmellina E. et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012; 14: 42 DOI: 10.1186/1532-429X-14-42.
- 17 Ferreira VM, Piechnik SK, DallʼArmellina E. et al. T(1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 2013; 6: 1048-1058 DOI: 10.1016/j.jcmg.2013.03.008.
- 18 Piechnik SK, Ferreira VM, Lewandowski AJ. et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 2013; 15: 13 DOI: 10.1186/1532-429X-15-13.
- 19 Karamitsos TD, Piechnik SK, Banypersad SM. et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013; 6: 488-497 DOI: 10.1016/j.jcmg.2012.11.013.
- 20 Liu S, Han J, Nacif MS. et al. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials. J Cardiovasc Magn Reson 2012; 14: 90 DOI: 10.1186/1532-429X-14-90.
- 21 von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA. et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 2013; 15: 53 DOI: 10.1186/1532-429X-15-53.
- 22 Luetkens JA, Doerner J, Thomas DK. et al. Acute myocarditis: multiparametric cardiac MR imaging. Radiology 2014; 273: 383-392 DOI: 10.1148/radiol.14132540.
- 23 Wong TC, Piehler K, Meier CG. et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 2012; 126: 1206-1216 DOI: 10.1161/CIRCULATIONAHA.111.089409.
- 24 Kellman P, Wilson JR, Xue H. et al. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 2012; 14: 63 DOI: 10.1186/1532-429X-14-63.
- 25 Miller CA Naish JH, Bishop P. et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 2013; 6: 373-383 DOI: 10.1161/CIRCIMAGING.112.000192.
- 26 Florian A, Ludwig A, Rösch S. et al. Myocardial fibrosis imaging based on T1-mapping and extracellular volume fraction (ECV) measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging. Eur Heart J Cardiovasc Imaging 2014; 15: 1004-1012 DOI: 10.1093/ehjci/jeu050.
- 27 Lee JJ, Liu S, Nacif MS. et al. Myocardial T1 and extracellular volume fraction mapping at 3 tesla. J Cardiovasc Magn Reson 2011; 13: 75 DOI: 10.1186/1532-429X-13-75.
- 28 Mongeon FP, Jerosch-Herold M, Coelho-Filho OR. et al. Quantification of extracellular matrix expansion by CMR in infiltrative heart disease. JACC Cardiovasc Imaging 2012; 5: 897-907 DOI: 10.1016/j.jcmg.2012.04.006.
- 29 Blume U, Lockie T, Stehning C. et al. Interleaved T(1) and T(2) relaxation time mapping for cardiac applications. J Magn Reson Imaging 2009; 29: 480-487 DOI: 10.1002/jmri.21652.
- 30 Sparrow P, Amirabadi A, Sussman MS. et al. Quantitative assessment of myocardial T2 relaxation times in cardiac amyloidosis. J Magn Reson Imaging 2009; 30: 942-946 DOI: 10.1002/jmri.21918.
- 31 Giri S, Chung YC, Merchant A. et al. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 2009; 11: 56 DOI: 10.1186/1532-429X-11-56.
- 32 Verhaert D, Thavendiranathan P, Giri S. et al. Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging 2011; 4: 269-278 DOI: 10.1016/j.jcmg.2010.09.023.
- 33 Giri S, Shah S, Xue H. et al. Myocardial T2 mapping with respiratory navigator and automatic nonrigid motion correction. Magn Reson Med 2012; 68: 1570-1578 DOI: 10.1002/mrm.24139.
- 34 Crouser ED, Ono C, Tran T. et al. Improved detection of cardiac sarcoidosis using magnetic resonance with myocardial T2 mapping. Am J Respir Crit Care Med 2014; 189: 109-112 DOI: 10.1164/rccm.201309-1668LE.
- 35 von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA. et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 2013; 15: 53 DOI: 10.1186/1532-429X-15-53.
- 36 Sprinkart AM, Luetkens JA, Traber F. et al. Gradient Spin Echo (GraSE) imaging for fast myocardial T2 mapping. J Cardiovasc Magn Reson 2015; 17: 12 DOI: 10.1186/s12968-015-0127-z.
- 37 Carpenter JP, He T, Kirk P. et al. On T2* magnetic resonance and cardiac iron. Circulation 2011; 123: 1519-1528 DOI: 10.1161/CIRCULATIONAHA.110.007641.
- 38 Granitz M, Motloch LJ, Granitz C. et al. Comparison of native myocardial T1 and T2 mapping at 1.5T and 3T in healthy volunteers : Reference values and clinical implications. Wien Klin Wochenschr 2019; 131: 143-155 DOI: 10.1007/s00508-018-1411-3.
- 39 Triadyaksa P, Oudkerk M, Sijens PE. Cardiac T2 * mapping: Techniques and clinical applications. J Magn Reson Imaging 2020; 52: 1340-1351 DOI: 10.1002/jmri.27023.
- 40 Ferreira VM, Schulz-Menger J, Holmvang G. et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J Am Coll Cardiol 2018; 72: 3158-3176 DOI: 10.1016/j.jacc.2018.09.072.
- 41 Ferreira VM, Piechnik SK, DallʼArmellina E. et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012; 14: 42 DOI: 10.1186/1532-429X-14-42.
- 42 Ugander M, Bagi PS, Oki AJ. et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging 2012; 5: 596-603 DOI: 10.1016/j.jcmg.2012.01.016.
- 43 Bulluck H, White SK, Rosmini S. et al. T1 mapping and T2 mapping at 3T for quantifying the area-at-risk in reperfused STEMI patients. J Cardiovasc Magn Reson 2015; 17: 73 DOI: 10.1186/s12968-015-0173-6.
- 44 Messroghli DR, Walters K, Plein S. et al. Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med 2007; 58: 34-40 DOI: 10.1002/mrm.21272.
- 45 DallʼArmellina E, Piechnik SK, Ferreira VM. et al. Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction. J Cardiovasc Magn Reson 2012; 14: 15 DOI: 10.1186/1532-429X-14-15.
- 46 Pan JA, Lee YJ, Salerno M. Diagnostic Performance of Extracellular Volume, Native T1, and T2 Mapping Versus Lake Louise Criteria by Cardiac Magnetic Resonance for Detection of Acute Myocarditis: A Meta-Analysis. Circ Cardiovasc Imaging 2018; 11: e007598 DOI: 10.1161/CIRCIMAGING.118.007598.
- 47 Luetkens JA, Homsi R, Sprinkart AM. et al. Incremental value of quantitative CMR including parametric mapping for the diagnosis of acute myocarditis. Eur Heart J Cardiovasc Imaging 2016; 17: 154-161 DOI: 10.1093/ehjci/jev246.
- 48 Luetkens JA, Faron A, Isaak A. et al. Comparison of Original and 2018 Lake Louise Criteria for Diagnosis of Acute Myocarditis: Results of a Validation Cohort. Radiology: Cardiothoracic Imaging 2019; 1: e190010 DOI: 10.1148/ryct.2019190010.
- 49 McNally EM, Mestroni L. Dilated Cardiomyopathy: Genetic Determinants and Mechanisms. Circ Res 2017; 121: 731-748 DOI: 10.1161/CIRCRESAHA.116.309396.
- 50 Halliday BP, Baksi AJ, Gulati A. et al. Outcome in Dilated Cardiomyopathy Related to the Extent, Location, and Pattern of Late Gadolinium Enhancement. JACC Cardiovasc Imaging 2019; 12: 1645-1655 DOI: 10.1016/j.jcmg.2018.07.015.
- 51 Nakamori S, Dohi K, Ishida M. et al. Native T1 Mapping and Extracellular Volume Mapping for the Assessment of Diffuse Myocardial Fibrosis in Dilated Cardiomyopathy. JACC Cardiovasc Imaging 2018; 11: 48-59 DOI: 10.1016/j.jcmg.2017.04.006.
- 52 aus dem Siepen F, Buss SJ, Messroghli D. et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 2015; 16: 210-216 DOI: 10.1093/ehjci/jeu183.
- 53 Dabir D, Luetkens J, Kuetting DLR. et al. Cardiac magnetic resonance including parametric mapping in acute Takotsubo syndrome: Preliminary findings. Eur J Radiol 2019; 113: 217-224 DOI: 10.1016/j.ejrad.2019.02.026.
- 54 Aikawa Y, Noguchi T, Morita Y. et al. Clinical impact of native T1 mapping for detecting myocardial impairment in takotsubo cardiomyopathy. Eur Heart J Cardiovasc Imaging 2019; 20: 1147-1155 DOI: 10.1093/ehjci/jez034.
- 55 Pica S, Sado DM, Maestrini V. et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014; 16: 99 DOI: 10.1186/s12968-014-0099-4.
- 56 Maceira AM, Joshi J, Prasad SK. et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005; 111: 186-193 DOI: 10.1161/01.CIR.0000152819.97857.9D.
- 57 Lin L, Li X, Feng J. et al. The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis. J Cardiovasc Magn Reson 2018; 20: 2 DOI: 10.1186/s12968-017-0419-6.
- 58 Ridouani F, Damy T, Tacher V. et al. Myocardial native T2 measurement to differentiate light-chain and transthyretin cardiac amyloidosis and assess prognosis. J Cardiovasc Magn Reson 2018; 20: 58 DOI: 10.1186/s12968-018-0478-3.
- 59 Torlasco C, Cassinerio E, Roghi A. et al. Role of T1 mapping as a complementary tool to T2* for non-invasive cardiac iron overload assessment. PLoS One 2018; 13: e0192890 DOI: 10.1371/journal.pone.0192890.
- 60 Carpenter JP, He T, Kirk P. et al. Calibration of myocardial T2 and T1 against iron concentration. J Cardiovasc Magn Reson 2014; 16: 62 DOI: 10.1186/s12968-014-0062-4.
- 61 Xu J, Zhuang B, Sirajuddin A. et al. MRI T1 Mapping in Hypertrophic Cardiomyopathy: Evaluation in Patients Without Late Gadolinium Enhancement and Hemodynamic Obstruction. Radiology 2020; 294: 275-286 DOI: 10.1148/radiol.2019190651.
- 62 Puntmann VO, Isted A, Hinojar R. et al. T1 and T2 Mapping in Recognition of Early Cardiac Involvement in Systemic Sarcoidosis. Radiology 2017; 285: 63-72 DOI: 10.1148/radiol.2017162732.
- 63 Greulich S, Kitterer D, Latus J. et al. Comprehensive Cardiovascular Magnetic Resonance Assessment in Patients With Sarcoidosis and Preserved Left Ventricular Ejection Fraction. Circ Cardiovasc Imaging 2016; 9 DOI: 10.1161/CIRCIMAGING.116.005022.