RSS-Feed abonnieren
DOI: 10.1055/a-1337-5092
Ein Überblick über die Osteoimmunologie
OsteoimmunologyAn overviewZUSAMMENFASSUNG
Osteoimmunologie beschreibt die Wechselwirkungen zwischen dem Immunsystem und dem Knochenstoffwechsel. Besonders bei rheumatischen Erkrankungen sind die Auswirkungen der Osteoimmunologie gut ersichtlich, da viele entzündliche rheumatische Erkrankungen mit lokalen Knochenerosionen und Osteoporose einhergehen. Die Zellen des Immunsystems, welche die chronische Entzündung aufrechterhalten, führen gleichzeitig zu einer Stimulation der Osteoklastogenese und somit der Knochenresorption. Osteoblasten hingegen werden in ihrer Funktion unterdrückt und damit bleiben die knochenregenerativen Prozesse aus. Die Aufschlüsselung der zugrundeliegenden Mechanismen der Knochendestruktion ist aktuell Gegenstand intensiver Forschung und könnte zu neuen therapeutischen Strategien führen, um die Knochengesundheit bei Patienten mit rheumatischen Erkrankungen aufrechtzuerhalten. Dieser Artikel gibt einen kurzen Überblick über das Feld der Osteoimmunologie und fokussiert insbesondere auf den Einfluss des Immunsystems auf die Knochenresorption.
SUMMARY
Osteoimmunology describes the interaction between the bone and immune systems. Rheumatic diseases in particular are prototypical osteoimmunological diseases as the chronic inflammatory processes lead to profound local and systemic bone destruction. Cells of the immune system, which drive chronic inflammation, also stimulate osteoclastogenesis and bone resorption and concomitantly inhibit osteoblast function and bone regeneration, thus leading to bone loss. Understanding the underlying mechanisms of osteoimmunology is of great scientific and medical interest and will aid in identifying new targets to maintain bone health in affected patients. This review gives an overview of the field of osteoimmunology with a focus on mechanisms leading to enhanced bone resorption.
Schlüsselwörter
Osteoimmunologie - rheumatoide Arthritis - Parodontitis - Knochenverlust - Zytokine - OsteoklastenKeywords
Osteoimmunology - rheumatoid arthritis - parodontitis - bone loss - cytokines - osteoclastsPublikationsverlauf
Artikel online veröffentlicht:
26. Februar 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literaturverzeichnis
- 1 Horton JE, Raisz LG, Simmons HA. et al Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science (80-) 1972; 177: 793-795
- 2 Arron JR, Choi Y. Bone versus immune system. Nature 2000; 408: 535-536
- 3 Takayanagi H, Ogasawara K, Hida S. et al T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 2000; 408: 600-605
- 4 Agrawal M, Arora S, Li J. et al Bone, inflammation, and inflammatory bowel disease. Curr Osteoporos Rep 2011; 9: 251-257
- 5 Attia EAS, Khafagy A, Abdel-Raheem S. et al Assessment of osteoporosis in psoriasis with and without arthritis: Correlation with disease severity. Int J Dermatol 2011; 50: 30-35
- 6 Haugeberg G, Uhlig T, Falch JA. et al Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis: Results from 394 patients in the Oslo County rheumatoid arthritis register. Arthritis Rheum 2000; 43: 522-530
- 7 Gruber R. Osteoimmunology: Inflammatory osteolysis and regeneration of the alveolar bone. J Clin Periodontol 2019; 46: 52-69
- 8 Ginaldi L, Di Benedetto MC, De Martinis M. Osteoporosis, inflammation and ageing. Immun Ageing 2005: 2
- 9 Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol 2019; 19: 626-642
- 10 Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep 2014; 3: 481
- 11 Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-κB ligand and osteoprotegerin in bone cell biology. J Mol Med 2001; 79: 243-253
- 12 Dallas SL, Prideaux M, Bonewald LF. The osteocyte: An endocrine cell . . . and more. Endocr Rev 2013; 34: 658-690
- 13 Ono T, Hayashi M, Sasaki F. et al RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen 2020: 40
- 14 Anderson DM, Maraskovsky E, Billingsley WL. et al A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997; 390: 175-179
- 15 Mueller CG, Hess E. Emerging functions of RANKL in lymphoid tissues. Front Immunol. 2012: 3
- 16 Duheron V, Hess E, Duval M. et al Receptor activator of NF-κB (RANK) stimulates the proliferation of epithelial cells of the epidermo-pilosebaceous unit. Proc Natl Acad Sci U S A 2011; 108: 5342-5347
- 17 Hofbauer LC, Khosla S, Dunstan CR. et al The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000; 15: 2-12
- 18 Singh K, Piprode V, Mhaske ST. et al IL-3 Differentially Regulates Membrane and Soluble RANKL in Osteoblasts through Metalloproteases and the JAK2/STAT5 Pathway and Improves the RANKL/OPG Ratio in Adult Mice. J Immunol 2018; 200: 595-606
- 19 Tunyogi-Csapo M, Kis-Toth K, Radacs M. et al Cytokine-controlled RANKL and osteoprotegerin expression by human and mouse synovial fibroblasts: Fibroblast-mediated pathologic bone resorption. Arthritis Rheum 2008; 58: 2397-2408
- 20 Palmqvist P, Lundberg P, Persson E. et al Inhibition of hormone and cytokine-stimulated osteoclastogenesis and bone resorption by interleukin-4 and interleukin-13 is associated with increased osteoprotegerin and decreased RANKL and RANK in a STAT6-dependent pathway. J Biol Chem 2006; 281: 2414-2429
- 21 Mori T, Miyamoto T, Yoshida H. et al IL-1 and TNF -initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol 2011; 23: 701-712
- 22 Hartgring SAY, Willis CR, Alcorn D. et al Blockade of the interleukin-7 receptor inhibits collagen-induced arthritis and is associated with reduction of T cell activity and proinflammatory mediators. Arthritis Rheum 2010; 62: 2716-2725
- 23 Lee KA, Kim KW, Kim BM. et al Promotion of osteoclastogenesis by IL-26 in rheumatoid arthritis. Arthritis Res Ther 2019: 21
- 24 Marahleh A, Kitaura H, Ohori F. et al TNF-α Directly Enhances Osteocyte RANKL Expression and Promotes Osteoclast Formation. Front Immunol 2019: 10
- 25 Feng W, Guo J, Li M. RANKL-independent modulation of osteoclastogenesis. J Oral Biosci 2019; 61: 16-21
- 26 Raphael I, Nalawade S, Eagar TN. et al T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2015; 74: 5-17
- 27 Panitch HS, Hirsch RL, Schindler J. et al Treatment of multiple sclerosis with gamma interferon: Exacerbations associated with activation of the immune system. Neurology 1987; 37: 1097-1102
- 28 Schwarting A, Wada T, Kinoshita K. et al IFN-gamma receptor signaling is essential for the initiation, acceleration, and destruction of autoimmune kidney disease in MRL-Fas(lpr) mice. J Immunol 1998; 161: 494-503 Im Internet http://www.jimmunol.org/content/161/1/494
- 29 Cruz A, Khader SA, Torrado E. et al Cutting Edge: IFN-γ Regulates the Induction and Expansion of IL-17-Producing CD4 T Cells during Mycobacterial Infection. J Immunol 2006; 177: 1416-1420
- 30 Nelson BH. IL-2, Regulatory T Cells, and Tolerance. J Immunol 2004; 172: 3983-3988
- 31 Adamopoulos IE, Chao C chi, Geissler R. et al Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors. Arthritis Res Ther 2010; 12: R29
- 32 Sato K, Suematsu A, Okamoto K. et al Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 2006; 203: 2673-2682
- 33 Yago T, Nanke Y, Kawamoto M. et al IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther 2007; 9: 1-12
- 34 Glowacki AJ, Yoshizawa S, Jhunjhunwala S. et al Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes. Proc Natl Acad Sci U S A 2013; 110: 18525-18530
- 35 Jiao S, Subudhi SK, Aparicio A. et al Differences in Tumor Microenvironment Dictate T Helper Lineage Polarization and Response to Immune Checkpoint Therapy. Cell 2019; 179: 1177-1190.e13
- 36 Ueta M, Takaoka K, Yamamura M. et al Effects of TGF-β1 on the migration and morphology of RAW264.7 cells in vitro. Mol Med Rep 2019; 20: 4331-4339
- 37 Krast M, Gorny G, Sells Galvin RJ. et al Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-β regulation of osteoclast differentiation. J Cell Physiol 2004; 200: 99-106
- 38 Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 2012; 8: 272-288
- 39 Liu D, Yao S, Wise GE. Effect of interleukin-10 on gene expression of osteoclastogenic regulatory molecules in the rat dental follicle. Eur J Oral Sci 2006; 114: 42-49
- 40 Houri-Hoddod Y, Soskolne WA, Halabi A. et al IL-10 gene transfer attenuates P. gingivalis-induced inflammation. J Dent Res 2007; 86: 560-564
- 41 Xiong Y, Yan C, Chen L. et al IL-10 induces MC3T3-E1 cells differentiation towards osteoblastic fate in murine model. J Cell Mol Med 2020; 24: 1076-1086
- 42 Komatsu N, Okamoto K, Sawa S. et al Pathogenic conversion of Foxp3 + T cells into TH17 cells in autoimmune arthritis. Nat Med 2014; 20: 62-68
- 43 Tsukasaki M, Komatsu N, Nagashima K. et al Host defense against oral microbiota by bone-damaging T cells. Nat Commun 2018; 9: 1-11
- 44 Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol 2006; 6: 107-116
- 45 Wang Y, Xiao M, Tao C. et al Inactivation of mTORC1 Signaling in Osterix-Expressing Cells Impairs B-cell Differentiation. J Bone Miner Res 2018; 33: 732-742
- 46 Onal M, Xiong J, Chen X. et al Receptor activator of nuclear factor κB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J Biol Chem 2012; 287: 29851-29860
- 47 Meednu N, Zhang H, Owen T. et al Production of RANKL by Memory B Cells: A Link between B Cells and Bone Erosion in Rheumatoid Arthritis. Arthritis Rheumatol 2016; 68: 805-816
- 48 Edwards JCW, Szczepański L, Szechiński J. et al Efficacy of B-Cell-Targeted Therapy with Rituximab in Patients with Rheumatoid Arthritis. N Engl J Med 2004; 350: 2572-2581
- 49 Oliver-Bell J, Butcher JP, Malcolm J. et al Periodontitis in the absence of B cells and specific anti-bacterial antibody. Mol Oral Microbiol 2015; 30: 160-169
- 50 Li Y, Toraldo G, Li A. et al B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 2007; 109: 3839-3848
- 51 Hu F, Liu H, Liu X. et al Pathogenic conversion of regulatory B10 cells into osteoclast-priming cells in rheumatoid arthritis. J Autoimmun 2017; 76: 53-62
- 52 Yu P, Hu Y, Liu Z. et al Local induction of B cell interleukin-10 competency alleviates inflammation and bone loss in ligatureinduced experimental periodontitis in mice. Infect Immun 2017: 85
- 53 Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8: 958-969
- 54 Brancato SK, Albina JE. Wound macrophages as key regulators of repair: Origin, phenotype, and function. Am J Pathol 2011; 178: 19-25
- 55 Guihard P, Danger Y, Brounais B. et al Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells 2012; 30: 762-772
- 56 Alexander KA, Chang MK, Maylin ER. et al Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 2011; 26: 1517-1532
- 57 Schlundt C, El Khassawna T, Serra A. et al Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone 2018; 106: 78-89
- 58 Granucci F, Vizzardelli C, Pavelka N. et al Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol 2001; 2: 882-888
- 59 Arizon M, Nudel I, Segev H. et al Langerhans cells down-regulate inflammation-driven alveolar bone loss. Proc Natl Acad Sci U S A 2012; 109: 7043-7048
- 60 Byrne A, Reen DJ. Lipopolysaccharide Induces Rapid Production of IL-10 by Monocytes in the Presence of Apoptotic Neutrophils. J Immunol 2002; 168: 1968-1977
- 61 Moutsopoulos NM, Konkel J, Sarmadi M. et al Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci Transl Med 2014: 6
- 62 Hashimoto J, Yoshikawa H, Takaoka K. et al Inhibitory effects of tumor necrosis factor alpha on fracture healing in rats. Bone 1989; 10: 453-457
- 63 Lam RS, O’Brien-Simpson NM, Lenzo JC. et al Macrophage Depletion Abates Porphyromonas gingivalis –Induced Alveolar Bone Resorption in Mice . J Immunol 2014; 193: 2349-2362
- 64 Yu VWC, Saez B, Cook C. et al Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J Exp Med 2015; 212: 759-774
- 65 Greenbaum A, Hsu YMS, Day RB. et al CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 2013; 495: 227-230
- 66 Raaijmakers MHGP, Mukherjee S, Guo S. et al Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010; 464: 852-857
- 67 Kode A, Manavalan JS, Mosialou I. et al Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature 2014; 506: 240-244
- 68 Fulzele K, Krause DS, Panaroni C. et al Myelopoiesis is regulated by osteocytes through Gsα-dependent signaling. Blood 2013; 121: 930-939
- 69 Sato M, Asada N, Kawano Y. et al Osteocytes regulate primary lymphoid organs and fat metabolism. Cell Metab 2013; 18: 749-758
- 70 Sreehari S, Naik DR, Eapen M. Osteopetrosis: A rare cause of anemia. Hematol Rev 2011; 3: 1-2
- 71 Reeves JD, August CS, Humbert JR. et al Host Defense in Infantile Osteopetrosis. Pediatrics 1979: 64
- 72 Kollet O, Dar A, Shivtiel S. et al Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006; 12: 657-664
- 73 Aletaha D, Smolen JS. Diagnosis and Management of Rheumatoid Arthritis: A Review. JAMA – J Am Med Assoc 2018; 320: 1360-1372