Planta Med 2021; 87(09): 656-685
DOI: 10.1055/a-1338-1011
Biological and Pharmacological Activity
Reviews

Medicinal Plants in the Treatment of Depression: Evidence from Preclinical Studies

Inés Moragrega
1   Departament de Psicobiologia, Facultat de Psicologia, Universitat de València
,
2   Departament de Farmacologia, Facultat de Farmàcia, Universitat de València
› Author Affiliations

Abstract

Medicinal plants and their extracts are natural remedies with enormous potential for treating various diseases, including depression and anxiety. In the case of depression, hundreds of plants have traditionally been used in folk medicine for generations. Different plant extracts and natural products have been analyzed as potential antidepressant agents with validated models to test for antidepressant-like effects in animals, although other complementary studies have also been employed. Most of these studies focus on the possible mediators implicated in these potential effects, with dopamine, serotonin, and noradrenaline being the principal neurotransmitters implicated, both through interference with receptors and with their metabolism by monoamino oxidases, as well as through neuro-endocrine and neuroprotective effects. There are approximately 650 reports of antidepressant-like medicinal plants in PubMed; 155 of them have been compiled in this review, with a relevant group yielding positive results. Saffron and turmeric are the most relevant species studied in both preclinical and clinical studies; St. Johnʼs wort or kava have also been tested extensively. To the best of our knowledge, no review to date has provided a comprehensive understanding of the biomolecular mechanisms of action of these herbs or of whether their potential effects could have real benefits. The purpose of this narrative review is to provide an update regarding medicinal plants from the year 2000 to the present to examine the therapeutic potential of these antidepressant-like plants in order to contribute to the development of new therapeutic methods to alleviate the tremendous burden that depression causes worldwide.

Supporting Information



Publication History

Received: 28 July 2020

Accepted after revision: 15 December 2020

Article published online:
12 January 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Fusar-Poli L, Vozza L, Gabbiadini A, Vanella A, Concas I, Tinacci S, Petralia A, Signorelli MS, Aguglia E. Curcumin for depression: a meta-analysis. Crit Rev Food Sci Nutr 2019; 19: 1-11
  • 2 World Health Organization. Depression and other common mental Disorders. Global Health Estimates. Geneve: WHO; 2017
  • 3 American Psychiatric Association. Diagnostic and statistical Manual for mental Disorders, 5ª ed (DSM-5). Arlington: American Psychiatric Publishing; 2013
  • 4 Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 2006; 163: 1905-1917
  • 5 Visentin APV, Colombo R, Scotton E, Fracasso DS, da Rosa AR, Branco CS, Salvador M. Targeting inflammatory-mitochondrial response in major depression: current evidence and further challenges. Oxid Med Cell Longev 2020; 2020: 2972968
  • 6 Lopresti AL. Curcumin for neuropsychiatric disorders: a review of in vitro, animal and human studies. J Psychopharmacol 2019; 31: 287-302
  • 7 Zunszain PA, Hepgul N, Pariante CM. Inflammation and depression. Curr Topics Behav Neurosci 2013; 14: 135-151
  • 8 Lotrich FE. Inflammatory cytokine-associated depression. Brain Res 2015; 1617: 113-125
  • 9 Lopresti AL. Cognitive behaviour therapy and inflammation: a systematic review of its relationship and the potential implications for the treatment of depression. Aust N Z J Psychiatry 2017; 51: 565-582
  • 10 Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O& NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 676-692
  • 11 Moylan S, Maes M, Wray NR, Berk M. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 2013; 18: 595-606
  • 12 Sarris J. Herbal medicines in the treatment of psychiatric disorders: 10-year updated review. Phytother Res 2018; 32: 1147-1162
  • 13 Guest PC. Pre-clinical Models. Techniques and Protocols. New York: Humana Press; 2019
  • 14 Kraeuter AK, Guest PC, Sarnyai Z. The forced swim test for depression-like behavior in rodents. Methods Mol Biol 2019; 1916: 75-80
  • 15 Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl) 2005; 177: 245-255
  • 16 Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD. The tail suspension test. J Vis Exp 2012; 59: e3638
  • 17 Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD. The tail suspension test. J Vis Exp 2012; 59: e3769
  • 18 Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 2005; 29: 571-625
  • 19 Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: meta-analysis of model reliability. Neurosci Biobehav Rev 2019; 99: 101-116
  • 20 Kraeuter AK, Guest PC, Sarnyai Z. The elevated plus maze test for measuring anxiety-like behavior in rodents. Methods Mol Biol 2019; 1916: 69-74
  • 21 Kraeuter AK, Guest PC, Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol Biol 2019; 1916: 99-103
  • 22 Horii Y, McTaggart I, Kawaguchi M. Testing animal anxiety in rats: effects of open arm ledges and closed arm wall transparency in elevated plus maze test. J Vis Exp 2018; 136: 56428
  • 23 Dhingra D, Sharma A. A review on antidepressant plants. Nat Prod Rad 2006; 5: 144-152
  • 24 Sarris J, Panossian A, Schweitzer I, Stough C, Scholey A. Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. Eur Neuropsychopharmacol 2011; 21: 841-860
  • 25 Farahani MS, Bahramsoltani R, Farzaei MH, Abdollahi M, Rahimi R. Plant-derived natural medicines for the management of depression: an overview of mechanisms of action. Rev Neurosci 2015; 26: 305-321
  • 26 Martins J, Brijesh S. Phytochemistry and pharmacology of anti-depressant medicinal plants: A review. Biomed Pharmacother 2018; 104: 343-365
  • 27 Lee G, Bae H. Therapeutic effects of phytochemicals and medicinal herbs on depression. Biomed Res Int 2017; 2017: 6596241
  • 28 Bakhshaeil S. Effect of nine medicinal plants as a traditional treatment on depression. J Appl Pharm 2017; 9: 244
  • 29 Rahman MR, Ali M, Sharif M, Tajmin A. A review study on the traditional plants has potential antidepressant property. MOJ Cell Sci Rep 2017; 4: 00100
  • 30 Muszyńska B, Łojewski M, Rojowski J, Opoka W, Sułkowska-Ziaja K. Natural products of relevance in the prevention and supportive treatment of depression. Psychiatr Pol 2015; 49: 435-453
  • 31 Ismail H, Amanat MA, Iqbal A, Mirza B. Medicinal plants: a complementary and alternative antidepressant therapy. Curr Pharm Des 2018; 24: 2609-2624
  • 32 The Plant List. A working list of all known plant species. Royal Botanic Gardens, Kew and Missouri Botanical Garden. Version 1.1. Accessed June 30, 2020 at: http://www.theplantlist.org/
  • 33 Yan HC, Qu HD, Sun LR, Li SJ, Cao X, Fang YY, Jie W, Bean JC, Wu WK, Zhu XH, Gao TM. Fuzi polysaccharide-1 produces antidepressant-like effects in mice. Int J Neuropsychopharmacol 2010; 13: 623-633
  • 34 Zhao L, Sun Z, Yang L, Cui R, Yang W, Li B. Neuropharmacological effects of aconiti lateralis radix praeparata. Clin Exp Pharmacol Physiol 2020; 47: 531-542
  • 35 Zhang FH, Wang ZM, Liu YT, Huang JS, Liang S, Wu HH, Xu YT. Bioactivities of serotonin transporter mediate antidepressant effects of Acorus tatarinowii Schott. J Ethnopharmacol 2019; 241: 111967
  • 36 Dong H, Gao Z, Rong H, Jin M, Zhang X. β-Asarone reverses chronic unpredictable mild stress-induced depression-like behavior and promotes hippocampal neurogenesis in rats. Molecules 2014; 19: 5634-5649
  • 37 Han P, Han T, Peng W, Wang XR. Antidepressant-like effects of essential oil and asarone, a major essential oil component from the rhizome of Acorus tatarinowii . Pharm Biol 2013; 51: 589-594
  • 38 Ye L, Hu Z, Du G, Zhang J, Dong Q, Fu F, Tian J. Antidepressant-like effects of the extract from Cimicifuga foetida L. J Ethnopharmacol 2012; 144: 683-691
  • 39 Winterhoff H, Spengler B, Christoffel V, Butterweck V, Löhning A. Cimicifuga extract BNO 1055: reduction of hot flushes and hints on antidepressant activity. Maturitas 2003; 44: S51-S58
  • 40 Kothari S, Minda M, Tonpay SD. Anxiolytic and antidepressant activities of methanol extract of Aegle marmelos leaves in mice. Indian J Physiol Pharmacol 2010; 54: 318-328
  • 41 Pedersen ME, Szewczyk B, Stachowicz K, Wieronska J, Andersen J, Stafford GI, van Staden J, Pilc A, Jäger AK. Effects of South African traditional medicine in animal models for depression. J Ethnopharmacol 2008; 119: 542-548
  • 42 Nielsen ND, Sandager M, Stafford GI, van Staden J, Jäger AK. Screening of indigenous plants from South Africa for affinity to the serotonin reuptake transport protein. J Ethnopharmacol 2004; 94: 159-163
  • 43 Zhou D, Jin H, Lin HB, Yang XM, Cheng YF, Deng FJ, Xu JP. Antidepressant effect of the extracts from fructus akebiae. Pharmacol Biochem Behav 2010; 94: 488-495
  • 44 Jin ZL, Gao N, Zhou D, Chi MG, Yang XM, Xu JP. The extracts of Fructus Akebiae, a preparation containing 90 % of the active ingredient hederagenin: serotonin, norepinephrine and dopamine reuptake inhibitor. Pharmacol Biochem Behav 2012; 100: 431-439
  • 45 Liang BF, Huang F, Wang HT, Wang GH, Yuan X, Zhang MZ, Guo HB, Cheng YF, Xu JP. Involvement of norepinephrine and serotonin system in antidepressant-like effects of hederagenin in the rat model of unpredictable chronic mild stress-induced depression. Pharm Biol 2015; 53: 368-377
  • 46 Foyet AS, Tsala DE, Bouba AA, Hritcu L. Anxiolytic and antidepressant-like effects of the aqueous extract of Alafia multiflora stem barks in rodents. Adv Pharmacol Sci 2012; 2012: 912041
  • 47 Kim WK, Jung JW, Ahn NY, Oh HR, Lee BK, Oh JK, Cheong JH, Chun HS, Ryu JH. Anxiolytic-like effects of extracts from Albizzia julibrissin bark in the elevated plus-maze in rats. Life Sci 2004; 75: 2787-2795
  • 48 Kim JH, Kim SY, Lee SY, Jang CG. Antidepressant like effects of Albizzia julibrissin in mice: involvement of the 5-HT1A receptor system. Pharmacol Biochem Behav 2007; 87: 41-47
  • 49 Liu J, Lv YW, Shi JL, Ma XJ, Chen Y, Zheng ZQ, Wang SN, Guo JY. Anti-anxiety effect of (−)-syringaresnol-4-O-β-D-apiofuranosyl-(1 → 2)-β-D-glucopyranoside from Albizzia julibrissin Durazz (Leguminosae). Molecules 2017; 22: E1331
  • 50 Velraj M, Vijayalakshmi A, Jayakumari S, Ramamoorthy S, Ravichandiran V, Srikanth J. Antidepressant activity of the ethanolic extract of Albizzia lebbeck (Linn) bark in animal models of depression. Drug Invent Today 2009; 1: 112-115
  • 51 Sakakibara H, Yoshino S, Kawai Y, Terao J. Antidepressant-like effect of onion (Allium cepa L.) powder in a rat behavioral model of depression. Biosci Biotechnol Biochem 2008; 72: 94-100
  • 52 Samad N, Saleem A. Administration of Allium cepa L. bulb attenuates stress-produced anxiety and depression and improves memory in male mice. Metab Brain Dis 2018; 33: 271-281
  • 53 Lee S, Kim DH, Lee CH, Jung JW, Seo YT, Jang YP, Ryu JH. Antidepressant-like activity of the aqueous extract of Allium macrostemon in mice. J Ethnopharmacol 2010; 131: 386-395
  • 54 Chen S, Wei C, Gao P, Kong H, Jia Z, Hu C, Dai W, Wu Y, Xu G. Effect of Allium macrostemon on a rat model of depression studied by using plasma lipid and acylcarnitine profiles from liquid chromatography/mass spectrometry. J Pharm Biomed Anal 2014; 89: 122-129
  • 55 Huang YJ, Lu KH, Lin YE, Panyod S, Wu HY, Chang WT, Sheen LY. Garlic essential oil mediates acute and chronic mild stress-induced depression in rats via modulation of monoaminergic neurotransmission and brain-derived neurotrophic factor levels. Food Funct 2019; 10: 8094-8105
  • 56 Zeni AL, Zomkowski AD, Maraschin M, Tasca CI, Rodrigues AL. Evidence of the involvement of the monoaminergic systems in the antidepressant-like effect of Aloysia gratissima . J Ethnopharmacol 2013; 148: 914-920
  • 57 Mora S, Díaz-Véliz G, Millán R, Lungenstrass H, Quirós S, Coto-Morales T, Hellión-Ibarrola MC. Anxiolytic and antidepressant-like effects of the hydroalcoholic extract from Aloysia polystachya in rats. Pharmacol Biochem Behav 2005; 82: 373-378
  • 58 Hellión-Ibarrola MC, Ibarrola DA, Montalbetti Y, Kennedy ML, Heinichen O, Campuzano M, Ferro EA, Alvarenga N, Tortoriello J, De Lima TC, Mora S. The antidepressant-like effects of Aloysia polystachya (Griseb.) Moldenke (Verbenaceae) in mice. Phytomedicine 2008; 15: 478-483
  • 59 Costa de Melo N, Sánchez-Ortiz BL, Dos Santos Sampaio TI, Matias Pereira AC, Pinheiro da Silva Neto FL, Ribeiro da Silva H, Alves Soares Cruz R, Keita H, Soares Pereira AM, Tavares Carvalho JC. Anxiolytic and antidepressant effects of the hydroethanolic extract from the leaves of Aloysia polystachya (Griseb.) Moldenke: a study on zebrafish (Danio rerio). Pharmaceuticals (Basel) 2019; 12: 106
  • 60 Jiménez-Ferrer E, Santillán-Urquiza MA, Alegría-Herrera E, Zamilpa A, Noguerón-Merino C, Tortoriello J, Navarro-García V, Avilés-Flores M, Fuentes-Mata M, Herrera-Ruiz M. Anxiolytic effect of fatty acids and terpenes fraction from Aloysia triphylla: serotoninergic, GABAergic and glutamatergic implications. Biomed Pharmacother 2017; 96: 320-327
  • 61 Bahramsoltani R, Rostamiasrabadi P, Shahpiri Z, Marques AM, Rahimi R, Farzaei MH. Aloysia citrodora Paláu (Lemon verbena): a review of phytochemistry and pharmacology. J Ethnopharmacol 2018; 222: 34-51
  • 62 Badhe SR, Badhe RV, Ghaisas MM, Chopade VV, Deshpande AD. Evaluations of antidepressant activity of Anacyclus pyrethrum root extract. Int J Green Pharm 2010; 4: 79-82
  • 63 Zhang JJ, Gao TT, Wang Y, Wang JL, Guan W, Wang YJ, Wang CN, Liu JF, Jiang B. Andrographolide exerts significant antidepressant-like effects involving the hippocampal BDNF system in mice. Int J Neuropsychopharmacol 2019; 22: 585-600
  • 64 Ren LX, Luo YF, Li X, Zuo DY, Wu YL. Antidepressant-like effects of sarsasapogenin from Anemarrhena asphodeloides Bunge (Liliaceae). Biol Pharm Bull 2006; 29: 2304-2306
  • 65 Ren LX, Luo YF, Li X, Wu YL. Antidepressant activity of sarsasapogenin from Anemarrhena asphodeloides Bunge (Liliaceae). Pharmazie 2007; 62: 78-79
  • 66 Sousa FC, Melo CT, Monteiro AP, Lima VT, Gutierrez SJ, Pereira BA, Barbosa-Filho JM, Vasconcelos SM, Fonteles MF, Viana GS. Antianxiety and antidepressant effects of riparin III from Aniba riparia (Nees) Mez (Lauraceae) in mice. Pharmacol Biochem Behav 2004; 78: 27-33
  • 67 Melo CT, de Carvalho AM, Moura BA, Teixeira CP, Vasconcelos LF, Feitosa ML, de Oliveira GV, Barbosa-Filho JM, Chavez Gutiérrez SJ, de França Fonteles MM, Vasconcelos SM, de Sousa FC. Evidence for the involvement of the serotonergic, noradrenergic, and dopaminergic systems in the antidepressant-like action of riparin III obtained from Aniba riparia (Nees) Mez (Lauraceae) in mice. Fundam Clin Pharmacol 2013; 27: 104-112
  • 68 Vasconcelos AS, Oliveira IC, Vidal LT, Rodrigues GC, Gutierrez SJ, Barbosa-Filho JM, Vasconcelos SM, de França Fonteles MM, Gaspar DM, de Sousa FC. Subchronic administration of riparin III induces antidepressive-like effects and increases BDNF levels in the mouse hippocampus. Fundam Clin Pharmacol 2015; 29: 394-403 Erratum in: Fundam Clin Pharmacol 2017; 31: 481 Erratum in: Fundam Clin Pharmacol 2017; 31: 481
  • 69 de Melo CT, Monteiro AP, Leite CP, de Araújo FL, Lima VT, Barbosa-Filho JM, de França Fonteles MM, de Vasconcelos SM, de Barros Viana GS, de Sousa FC. Anxiolytic-like effects of (O-methyl)-N-2, 6-dihydroxybenzoyl-tyramine (riparin III) from Aniba riparia (Nees) Mez (Lauraceae) in mice. Biol Pharm Bull 2006; 29: 451-454
  • 70 Teixeira CP, de Melo CT, de Araújo FL, de Carvalho AM, Silva MI, Barbosa-Filho JM, Macêdo DS, de Barros Viana GS, de Sousa FC. Antidepressant-like effect of riparin II from Aniba riparia in mice: evidence for the involvement of the monoaminergic system. Fundam Clin Pharmacol 2013; 27: 129-137
  • 71 de Sousa FC, Oliveira IC, Silva MI, de Melo CT, Santiago VR, de Castro Chaves R, Fernandes ML, Gutiérrez SJ, Vasconcelos SM, Macêdo DS, Barbosa Filho JM. Involvement of monoaminergic system in the antidepressant-like effect of riparin I from Aniba riparia (Nees) Mez (Lauraceae) in mice. Fundam Clin Pharmacol 2014; 28: 95-103
  • 72 Martínez-Vázquez M, Estrada-Reyes R, Araujo Escalona AG, Ledesma Velázquez I, Martínez-Mota L, Moreno J, Heinze G. Antidepressant-like effects of an alkaloid extract of the aerial parts of Annona cherimolia in mice. J Ethnopharmacol 2012; 139: 164-170
  • 73 Monteiro ÁB, Kelly de Souza Rodrigues C, Petícia do Nascimento E, Sales VDS, de Araújo Delmondes G, Nogueira da Costa MH, Pereira de Oliveira VA, Pereira de Morais L, Boligon AA, Barbosa R, Martins da Costa JG, Alencar de Menezes IR, Bezerra Felipe CF, Kerntopf MR. Anxiolytic and antidepressant-like effects of Annona coriacea (Mart.) and caffeic acid in mice. Food Chem Toxicol 2020; 136: 111049
  • 74 Diniz TC, de Oliveira Júnior RG, Miranda Bezerra Medeiros MA, Gama E Silva M, de Andrade Teles RB, Dos Passos Menezes P, de Sousa BMH, Abrahão Frank L, de Souza Araújo AA, Russo Serafini M, Stanisçuaski Guterres S, Pereira Nunes CE, Salvador MJ, da Silva Almeida JRG. Anticonvulsant, sedative, anxiolytic and antidepressant activities of the essential oil of Annona vepretorum in mice: involvement of GABAergic and serotonergic systems. Biomed Pharmacother 2019; 111: 1074-1087
  • 75 Xie W, Zhang X, Wang T, Hu J. Botany, traditional uses, phytochemistry and pharmacology of Apocynum venetum L. (Luobuma): a review. J Ethnopharmacol 2012; 141: 1-8
  • 76 Butterweck V, Nishibe S, Sasaki T, Uchida M. Antidepressant effects of Apocynum venetum leaves in a forced swimming test. Biol Pharm Bull 2001; 24: 848-851
  • 77 Butterweck V, Simbrey K, Seo S, Sasaki T, Nishibe S. Long-term effects of an Apocynum venetum extract on brain monoamine levels and β-AR density in rats. Pharmacol Biochem Behav 2003; 75: 557-564
  • 78 Zheng M, Fan Y, Shi D, Liu C. Antidepressant-like effect of flavonoids extracted from Apocynum venetum leaves on brain monoamine levels and dopaminergic system. J Ethnopharmacol 2013; 147: 108-113
  • 79 Zheng M, Liu C, Pan F, Shi D, Zhang Y. Antidepressant-like effect of hyperoside isolated from Apocynum venetum leaves: possible cellular mechanisms. Phytomedicine 2012; 19: 145-149
  • 80 Li X, Wu T, Yu Z, Li T, Zhang J, Zhang Z, Cai M, Zhang W, Xiang J, Cai D. Apocynum venetum leaf extract reverses depressive-like behaviors in chronically stressed rats by inhibiting oxidative stress and apoptosis. Biomed Pharmacother 2018; 100: 394-406
  • 81 Wu T, Li X, Li T, Cai M, Yu Z, Zhang J, Zhang Z, Zhang W, Xiang J, Cai D. Apocynum venetum leaf extract exerts antidepressant-like effects and inhibits hippocampal and cortical apoptosis of rats exposed to chronic unpredictable mild stress. Evid Based Complement Alternat Med 2018; 2018: 5916451
  • 82 Abbas G, Naqvi S, Erum S, Ahmed S, Atta-ur-Rahman. Dar A. Potential antidepressant activity of Areca catechu nut via elevation of serotonin and noradrenaline in the hippocampus of rats. Phytother Res 2013; 27: 39-45
  • 83 Peng W, Liu YJ, Wu N, Sun T, He XY, Gao YX, Wu CJ. Areca catechu L. (Arecaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J Ethnopharmacol 2015; 164: 340-356
  • 84 Mahmoudi M, Ebrahimzadeh MA, Ansaroudi F, Nabavi SF, Nabavi SM. Antidepressant and antioxidant activities of Artemisia absinthium L. at flowering stage. Afri J Biotechnol 2009; 8: 7170-7175
  • 85 Singh GK, Garabadu D, Muruganandam AV, Joshi VK, Krishnamurthy S. Antidepressant activity of Asparagus racemosus in rodent models. Pharmacol Biochem Behav 2009; 91: 283-290
  • 86 Meena J, Ojha R, Muruganandam AV, Krishnamurthy S. Asparagus racemosus competitively inhibits in vitro the acetylcholine and monoamine metabolizing enzymes. Neurosci Lett 2011; 503: 6-9
  • 87 Gohil KJ, Patel JA. A review on Bacopa monniera: current research and future prospects. Int J Green Pharm 2010; 4: 1-9
  • 88 Russo A, Borrelli F. Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine 2005; 12: 305-317
  • 89 Simpson T, Pase M, Stough C. Bacopa monnieri as an antioxidant therapy to reduce oxidative stress in the aging brain. Complement Alternat Med 2015; 2015: 615384
  • 90 Sairam K, Dorababu M, Goel RK, Bhattacharya SK. Antidepressant activity of standardized extract of Bacopa monniera in experimental models of depression in rats. Phytomedicine 2002; 9: 207-211
  • 91 Bhattacharya SK, Bhattacharya A, Kumar A, Ghosal S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother Res 2000; 14: 174-179
  • 92 Abhinayani G, Goud GN, Nagamani KC, Kaur D. Antidepressant and skeletal muscle relaxant activity of methanolic extracts of Basella alba L. Asian J Biomed Pharma Sci 2016; 6: 7-10
  • 93 Dhingra D, Joshi P. Antidepressant-like activity of Benincasa hispida fruits in mice: Possible involvement of monoaminergic and GABAergic systems. J Pharmacol Pharmacother 2012; 3: 60-62
  • 94 Stafford GI, Pedersen ME, van Staden J, Jäger AK. Review on plants with CNS-effects used in traditional South African medicine against mental diseases. J Ethnopharmacol 2008; 119: 513-537
  • 95 Kwon S, Lee B, Kim M, Lee H, Park HJ, Hahm DH. Antidepressant-like effect of the methanolic extract from Bupleurum falcatum in the tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34: 265-270
  • 96 Lee B, Yun HY, Shim I, Lee H, Hahm DH. Bupleurum falcatum prevents depression and anxiety-like behaviors in rats exposed to repeated restraint stress. J Microbiol Biotechnol 2012; 22: 422-430
  • 97 Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 2019; 11: E474
  • 98 Dong X, Yang C, Cao S, Gan Y, Sun H, Gong Y, Yang H, Yin X, Lu Z. Tea consumption and the risk of depression: a meta-analysis of observational studies. Aust N Z J Psychiatry 2015; 49: 334-345
  • 99 Zhu WL, Shi HS, Wei YM, Wang SJ, Sun CY, Ding ZB, Lu L. Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacol Res 2012; 65: 74-80
  • 100 Liu Y, Jia G, Gou L, Sun L, Fu X, Lan N, Li S, Yin X. Antidepressant-like effects of tea polyphenols on mouse model of chronic unpredictable mild stress. Pharmacol Biochem Behav 2013; 104: 27-32
  • 101 Di Lorenzo A, Nabavi SF, Sureda A, Moghaddam AH, Khanjani S, Arcidiaco P, Nabavi SM, Daglia M. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression. Mol Nutr Food Res 2016; 60: 566-579
  • 102 Teng J, Zhou W, Zeng Z, Zhao W, Huang Y, Zhang X. Quality components and antidepressant-like effects of GABA green tea. Food Funct 2017; 8: 3311-3318
  • 103 Barauna SC, Kaster MP, Heckert BT, do Nascimento KS, Rossi FM, Teixeira EH, Cavada BS, Rodrigues AL, Leal RB. Antidepressant-like effect of lectin from Canavalia brasiliensis (ConBr) administered centrally in mice. Pharmacol Biochem Behav 2006; 85: 160-169
  • 104 Rieger DK, Cunha RM, Lopes MW, Costa AP, Budni J, Rodrigues AL, Walz R, Teixeira EH, Nascimento KS, Cavada BS, Leal RB. ConBr, a lectin from Canavalia brasiliensis seeds, modulates signaling pathways and increases BDNF expression probably via a glycosylated target. J Mol Recognit 2014; 27: 746-754
  • 105 Rieger DK, Costa AP, Budni J, Moretti M, Barbosa SG, Nascimento KS, Teixeira EH, Cavada BS, Rodrigues AL, Leal RB. Antidepressant-like effect of Canavalia brasiliensis (ConBr) lectin in mice: evidence for the involvement of the glutamatergic system. Pharmacol Biochem Behav 2014; 122: 53-60
  • 106 Zhao G, Gai Y, Chu WJ, Qin GW, Guo LH. A novel compound N 1,N 5-(Z)-N 10-(E)-tri-p-coumaroylspermidine isolated from Carthamus tinctorius L. and acting by serotonin transporter inhibition. Eur Neuropsychopharmacol 2009; 19: 749-758
  • 107 Qazi N, Khan RA, Rizwani GH. Short communication-Evaluation of antianxiety and antidepressant properties of Carthamus tinctorius L. (Safflower) petal extract. Pak J Pharm Sci 2015; 28: 991-995
  • 108 Abbasi-Maleki S, Mousavi Z. Hydroethanolic extract of Carthamus tinctorius induces antidepressant-like effects: modulation by dopaminergic and serotonergic systems in tail suspension test in mice. Iran J Basic Med Sci 2017; 20: 1063-1073
  • 109 Mora S, Diaz-Veliz G, Lungenstrass H, García-González M, Coto-Morales T, Poletti C, De Lima TC, Herrera-Ruiz M, Tortoriello J. Central nervous system activity of the hydroalcoholic extract of Casimiroa edulis in rats and mice. J Ethnopharmacol 2005; 97: 191-197
  • 110 Han XH, Hong SS, Hwang JS, Lee MK, Hwang BY, Ro JS. Monoamine oxidase inhibitory components from Cayratia japonica . Arch Pharm Res 2007; 30: 13-17
  • 111 Bylka W, Znajdek-Awiżeń P, Studzińska-Sroka E, Dańczak-Pazdrowska A, Brzezińska M. Centella asiatica in dermatology: an overview. Phytother Res 2014; 28: 1117-1124
  • 112 Brinkhaus B, Lindner M, Schuppan D, Hahn EG. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica . Phytomedicine 2000; 7: 427-448
  • 113 Chen Y, Han T, Qin L, Rui Y, Zheng H. Effect of total triterpenes from Centella asiatica on the depression behavior and concentration of amino acid in forced swimming mice. Zhong Yao Cai 2003; 26: 870-873
  • 114 Chen Y, Han T, Rui Y, Yin M, Qin L, Zheng H. Effects of total triterpenes of Centella asiatica on the corticosterone levels in serum and contents of monoamine in depression rat brain. Zhong Yao Cai 2005; 28: 492-496
  • 115 Ceremuga TE, Valdivieso D, Kenner C, Lucia A, Lathrop K, Stailey O, Bailey H, Criss J, Linton J, Fried J, Taylor A, Padron G, Johnson AD. Evaluation of the anxiolytic and antidepressant effects of asiatic acid, a compound from gotu kola or Centella asiatica, in the male Sprague Dawley rat. AANA J 2015; 83: 91-98
  • 116 Agrawal A, Mohan M, Kasture S, Foddis C, Frau MA, Loi MC, Maxia A. Antidepressant activity of Ceratonia siliqua L. fruit extract, a source of polyphenols. Nat Prod Res 2011; 25: 450-456
  • 117 Zhang YJ, Huang W, Huang X, Wang Y, Wang Z, Wang C, Zhong BW, Sheng CX, Wang B, Zhang SF, Su NX, Liu ZQ, Zhou HH, Ren P. Fructus aurantii induced antidepressant effect via its monoaminergic mechanism and prokinetic action in rat. Phytomedicine 2012; 19: 1101-1107
  • 118 Potdar VH, Kibile SJ. Evaluation of antidepressant-like effect of Citrus maxima leaves in animal models of depression. Iran J Basic Med Sci 2011; 14: 478-483
  • 119 Mallick N, Khan RA. Behavioral effects of Citrus paradisi in rats. Metab Brain Dis 2016; 31: 329-335
  • 120 Mukherjee PK, Kumar V, Kumar NS, Heinrich M. The Ayurvedic medicine Clitoria ternatea–from traditional use to scientific assessment. J Ethnopharmacol 2008; 120: 291-301
  • 121 Kulkarni C, Pattanshetty JR, Amruthraj G. Effect of alcoholic extract of Clitoria ternatea Linn. on central nervous system in rodents. Indian J Exp Biol 1988; 26: 957-960
  • 122 Jain NN, Ohal CC, Shroff SK, Bhutada RH, Somani RS, Kasture VS, Kasture SB. Clitoria ternatea and the CNS. Pharmacol Biochem Behav 2003; 75: 529-536
  • 123 Malik J, Karan M, Vasisht K. Nootropic, anxiolytic and cns-depressant studies on different plant sources of shankhpushpi . Pharm Biol 2011; 49: 1234-1242
  • 124 Parvathi M, Ravishankar K. Evaluation of antidepressant, motor coordination and locomotor activities of ethanolic root extract of Clitoria ternatea . J Nat Rem 2013; 13: 19-24
  • 125 Dhingra D, Valecha R. Evaluation of the antidepressant-like activity of Convolvulus pluricaulis Choisy in the mouse forced swim and tail suspension tests. Med Sci Monit 2007; 13: BR155-BR161
  • 126 Gupta GL, Fernandes J. Protective effect of Convolvulus pluricaulis against neuroinflammation associated depressive behavior induced by chronic unpredictable mild stress in rat. Biomed Pharmacother 2019; 109: 1698-1708
  • 127 Ríos JL, Recio MC, Giner RM, Máñez S. An update review of saffron and its active constituents. Phytother Res 1996; 10: 189-193
  • 128 DʼAuria M, Mauriello G, Rana GL. Volatile organic compounds from saffron. Flavour Fragr J 2004; 19: 17-23
  • 129 Gresta F, Lombardo GM, Siracusa L, Ruperto G. Saffron, an alternative crop for sustainable agricultural systems. A review. Agron Sustain Dev 2008; 28: 95-112
  • 130 Padmavati J, Kumar CP, Saraswathi VS, Saravanan D, Lakshmi IA, Bindu NHS, Hemafaith V. Pharmacological, pharmacognostic and phytochemical review of saffron. Int J Pharm Technol 2011; 3: 1214-1234
  • 131 Ríos JL, Andújar I. Saffron Crocus (Crocus sativus): from Kitchen to Clinic. In: Teixeira Duarte MC, Rai M. eds. Therapeutic medicinal Plants. From Lab to the Market. Boca Raton: CRC Press; 2016: 77-94
  • 132 Winterhalter P, Straubinger M. Saffron-renewed interest in an ancient spice. Food Rev Int 2000; 16: 39-59
  • 133 Schmidt M, Betti G, Hensel A. Saffron in phytotherapy: pharmacology and clinical uses. Wien Med Wochenschr 2007; 157: 315-319
  • 134 Srivastava R, Ahmed H, Dixit RK, Dharamveer. Saraf SA. Crocus sativus L.: A comprehensive review. Pharmacogn Rev 2010; 4: 200-208
  • 135 Bathaie SZ, Mousavi SZ. New applications and mechanisms of action of saffron and its important ingredients. Crit Rev Food Sci Nutr 2010; 50: 761-786
  • 136 Mousavi SZ, Bathaie SZ. Historical uses of saffron: identifying potential new avenues for modern research. Avicenna J Phytomed 2011; 1: 57-66
  • 137 Hosseinzadeh H, Nassiri-Asl M. Avicennaʼs (Ibn Sina) the Canon of Medicine and saffron (Crocus sativus): a review. Phytother Res 2013; 27: 475-483
  • 138 Siddiqui MJ, Saleh MSM, Basharuddin SNBB, Zamri SHB, Mohd Najib MHB, Che Ibrahim MZB, Binti Mohd Noor NA, Binti Mazha HN, Mohd Hassan N, Khatib A. Saffron (Crocus sativus L.): as an antidepressant. J Pharm Bioallied Sci 2018; 10: 173-180
  • 139 Hosseinzadeh H, Noraei NB. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother Res 2009; 23: 768-774
  • 140 Rezaee R, Hosseinzadeh H. Safranal: from an aromatic natural product to a rewarding pharmacological agent. Iran J Basic Med Sci 2013; 16: 12-26
  • 141 Pellegrini N, Serafini M, Salvatore S, Del Rio D, Bianchi M, Brighenti F. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol Nutr Food Res 2006; 50: 1030-1038
  • 142 Kamalipour M, Akhondzadeh S. Cardiovascular effects of saffron: an evidence-based review. Tehran Heart Cent 2011; 6: 59-61
  • 143 Hosseinzadeh H, Sadeghnia HR. Protective effect of safranal on pentylenetetrazol-induced seizures in the rat: involvement of GABAergic and opioids systems. Phytomedicine 2007; 14: 256-262
  • 144 Lechtenberg M, Schepmann D, Niehues M, Hellenbrand N, Wünsch B, Hensel A. Quality and functionality of saffron: quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and σ1 (sigma-1) receptors. Planta Med 2008; 74: 764-772
  • 145 Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, Tsatsakis AM. The effects of Crocus sativus (saffron) and its constituents on nervous system: a review. Avicenna J Phytomed 2015; 5: 376-391
  • 146 Umadevi P, Murugan S, Jennifer Suganthi S, Subakanmani S. Evaluation of antidepressant like activity of Cucurbita pepo seed extracts in rats. Int J Curr Pharma Res 2011; 3: 108-113
  • 147 Chen Y, Kong LD, Xia X, Kung HF, Zhang L. Behavioral and biochemical studies of total furocoumarins from seeds of Psoralea corylifolia in the forced swimming test in mice. J Ethnopharmacol 2005; 96: 451-459
  • 148 Xu Q, Pan Y, Yi LT, Li YC, Mo SF, Jiang FX, Qiao CF, Xu HX, Lu XB, Kong LD, Kung HF. Antidepressant-like effects of psoralen isolated from the seeds of Psoralea corylifolia in the mouse forced swimming test. Biol Pharm Bull 2008; 31: 1109-1114
  • 149 Yi LT, Li YC, Pan Y, Li JM, Xu Q, Mo SF, Qiao CF, Jiang FX, Xu HX, Lu XB, Kong LD, Kung HF. Antidepressant-like effects of psoralidin isolated from the seeds of Psoralea corylifolia in the forced swimming test in mice. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 510-519
  • 150 Blumenthal M. (Ed) The complete German Commission E Monographs. Therapeutic Guide to herbal Medicines. Austin: American Botanical Council; 1998
  • 151 Vanaclocha B, Cañigueral S. Fitoterapia. Vademécum de Prescripción de Plantas Medicinales. 4ª ed. Barcelona: Masson; 2003
  • 152 European Medicines Agency (EMA) Committee on Herbal Medicinal Products (HMPC). Draft assessment report on Curcuma longa L. (C. domestica Valeton), rhizome–Revision 1. London: EMA. Doc. Ref.: EMA/HMPC/749518/2016. Publicación: 8/12/2017.
  • 153 European Medicines Agency (EMA) Committee on Herbal Medicinal Products (HMPC). Draft European Union herbal monograph on Curcuma longa L. (C. domestica Valeton), rhizome–Revision 1. London: EMA. Doc. Ref.: EMA/HMPC/329755/2017. Publicación: 8/12/2017.
  • 154 European Medicines Agency (EMA) Committee on Herbal Medicinal Products (HMPC). Draft list of references supporting the assessment of Curcuma longa L. (C. domestica Valeton), rhizome–Revision 1. London: EMA. Doc. Ref.: EMA/434955/2017. Publicación: 8/12/2017.
  • 155 Ammon HP, Wahl MA. Pharmacology of Curcuma longa . Planta Med 1991; 57: 1-7
  • 156 Amro MS, Teoh SL, Norzana AG, Srijit D. The potential role of herbal products in the treatment of Parkinsonʼs disease. Clin Ter 2018; 169: e23-e33
  • 157 Srivastav S, Fatima M, Mondal AC. Important medicinal herbs in Parkinsonʼs disease pharmacotherapy. Biomed Pharmacother 2017; 92: 856-863
  • 158 Kulkarni S, Dhir A, Akula KK. Potentials of curcumin as an antidepressant. Sci World J 2009; 9: 1233-1241
  • 159 Kulkarni SK, Dhir A. An overview of curcumin in neurological disorders. Indian J Pharm Sci 2010; 72: 149-154
  • 160 Lopresti AL, Hood SD, Drummond PD. Multiple antidepressant potential modes of action of curcumin: a review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J Psychopharmacol 2012; 26: 1512-1524
  • 161 Sanmukhani J, Anovadiya A, Tripathi CB. Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study. Acta Pol Pharm 2011; 68: 769-775
  • 162 Wang R, Xu Y, Wu HL, Li YB, Li YH, Guo JB, Li XJ. The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors. Eur J Pharmacol 2008; 578: 43-50
  • 163 Li YC, Wang FM, Pan Y, Qiang LQ, Cheng G, Zhang WY, Kong LD. Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33: 435-449
  • 164 Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl) 2008; 201: 435-442
  • 165 Bhutani MK, Bishnoi M, Kulkarni SK. Antidepressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 2009; 92: 39-43
  • 166 Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 2005; 29: 627-647
  • 167 Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ. Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav 2005; 82: 200-206
  • 168 Arora V, Kuhad A, Tiwari V, Chopra K. Curcumin ameliorates reserpine-induced pain-depression dyad: Behavioural, biochemical, neurochemical and molecular evidences. Psychoneuroendocrinology 2011; 36: 1570-1581
  • 169 Huang Z, Zhong XM, Li ZY, Feng CR, Pan AJ, Mao QQ. Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats. Neurosci Lett 2011; 493: 145-148
  • 170 Xu Y, Ku B, Cui L, Li X, Barish PA, Foster TC, Ogle WO. Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res 2007; 1162: 9-18
  • 171 Ceremuga TE, Helmrick K, Kufahl Z, Kelley J, Keller B, Philippe F, Golder J, Padrón G. Investigation of the anxiolytic and antidepressant effects of curcumin, a compound from turmeric (Curcuma longa), in the adult male Sprague-Dawley rat. Holist Nurs Pract 2017; 31: 193-203
  • 172 Ji CX, Li XY, Jia SB, Liu LL, Ge YC, Yang QX, Zhang JJ. The antidepressant effect of Cynanchum auriculatum in mice. Pharm Biol 2012; 50: 1067-1072
  • 173 Huang L, Zhao H, Huang B, Zheng C, Peng W, Qin L. Acanthopanax senticosus: review of botany, chemistry and pharmacology. Pharmazie 2011; 66: 83-97
  • 174 Jin L, Wu F, Li X, Li H, Du C, Jiang Q, You J, Li S, Xu Y. Anti-depressant effects of aqueous extract from Acanthopanax senticosus in mice. Phytother Res 2013; 27: 1829-1833
  • 175 Wu F, Li H, Zhao L, Li X, You J, Jiang Q, Li S, Jin L, Xu Y. Protective effects of aqueous extract from Acanthopanax senticosus against corticosterone-induced neurotoxicity in PC12 cells. J Ethnopharmacol 2013; 148: 861-868
  • 176 Gaire B, Lim D. Antidepressant effects of radix et caulis Acanthopanacis santicosi extracts on rat models with depression in terms of immobile behavior. J Tradit Chin Med 2014; 34: 317-323
  • 177 Pan Y, Kong LD, Li YC, Xia X, Kung HF, Jiang FX. Icariin from Epimedium brevicornum attenuates chronic mild stress-induced behavioral and neuroendocrinological alterations. Pharmacol Biochem Behav 2007; 87: 130-140
  • 178 Colla AR, Machado DG, Bettio LE, Colla G, Magina MD, Brighente IM, Rodrigues AL. Involvement of monoaminergic systems in the antidepressant-like effect of Eugenia brasiliensis Lam. (Myrtaceae) in the tail suspension test in mice. J Ethnopharmacol 2012; 143: 720-731
  • 179 Victoria FN, de Siqueira Brahm A, Savegnago L, Lenardão EJ. Involvement of serotoninergic and adrenergic systems on the antidepressant-like effect of E. uniflora L. leaves essential oil and further analysis of its antioxidant activity. Neurosci Lett 2013; 544: 105-109
  • 180 Chen PJ, Hsieh CL, Su KP, Hou YC, Chiang HM, Lin IH, Sheen LY. The Antidepressant effect of Gastrodia elata Bl. on the forced-swimming test in rats. Am J Chin Med 2008; 36: 95-106
  • 181 Zhan HD, Zhou HY, Sui P, Du XL, Wang WH, Dai L, Sui F, Huo HR, Jiang TL. The rhizome of Gastrodia elata Blume–an ethnopharmacological review. J Ethnopharmacol 2016; 189: 361-385
  • 182 Lin YE, Chou ST, Lin SH, Lu KH, Panyod S, Lai YS, Ho CT, Sheen LY. Antidepressant-like effects of water extract of Gastrodia elata Blume on neurotrophic regulation in a chronic social defeat stress model. J Ethnopharmacol 2018; 215: 132-139
  • 183 Lin YE, Lin SH, Chen WC, Ho CT, Lai YS, Panyod S, Sheen LY. Antidepressant-like effects of water extract of Gastrodia elata Blume in rats exposed to unpredictable chronic mild stress via modulation of monoamine regulatory pathways. J Ethnopharmacol 2016; 187: 57-65
  • 184 Tomić M, Tovilović G, Butorović B, Krstić D, Janković T, Aljancić I, Menković N. Neuropharmacological evaluation of diethylether extract and xanthones of Gentiana kochiana . Pharmacol Biochem Behav 2005; 81: 535-542
  • 185 Sakakibara H, Ishida K, Grundmann O, Nakajima J, Seo S, Butterweck V, Minami Y, Saito S, Kawai Y, Nakaya Y, Terao Y. Antidepressant effect of extracts from Ginkgo biloba leaves in behavioral models. Biol Pharm Bull 2006; 29: 1767-1770
  • 186 Rojas P, Serrano-García N, Medina-Campos ON, Pedraza-Chaverri J, Ogren SO, Rojas C. Antidepressant-like effect of a Ginkgo biloba extract (EGb761) in the mouse forced swimming test: role of oxidative stress. Neurochem Int 2011; 59: 628-636
  • 187 Zhang L, Liu J, Ge Y, Liu M. Ginkgo biloba extract reduces hippocampus inflammatory responses, improves cardiac functions and depressive behaviors in a heart failure mouse model. Neuropsychiatr Dis Treat 2019; 15: 3041-3050
  • 188 Dhingra D, Sharma A. Antidepressant-like activity of Glycyrrhiza glabra L. in mouse models of immobility tests. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 449-454
  • 189 Wang W, Hu X, Zhao Z, Liu P, Hu Y, Zhou J, Zhou D, Wang Z, Guo D, Guo H. Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 1179-1184
  • 190 Freitas AE, Budni J, Lobato KR, Binfaré RW, Machado DG, Jacinto J, Veronezi PO, Pizzolatti MG, Rodrigues AL. Antidepressant-like action of the ethanolic extract from Tabebuia avellanedae in mice: evidence for the involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34: 335-343
  • 191 Freitas AE, Machado DG, Budni J, Neis VB, Balen GO, Lopes MW, de Souza LF, Veronezi PO, Heller M, Micke GA, Pizzolatti MG, Dafre AL, Leal RB, Rodrigues AL. Antidepressant-like action of the bark ethanolic extract from Tabebuia avellanedae in the olfactory bulbectomized mice. J Ethnopharmacol 2013; 145: 737-745
  • 192 Freitas AE, Moretti M, Budni J, Balen GO, Fernandes SC, Veronezi PO, Heller M, Micke GA, Pizzolatti MG, Rodrigues AL. NMDA receptors and the L-arginine-nitric oxide-cyclic guanosine monophosphate pathway are implicated in the antidepressant-like action of the ethanolic extract from Tabebuia avellanedae in mice. J Med Food 2013; 16: 1030-1038
  • 193 Gonçalves AE, Bürger C, Amoah SK, Tolardo R, Biavatti MW, de Souza MM. The antidepressant-like effect of Hedyosmum brasiliense and its sesquiterpene lactone, podoandin in mice: evidence for the involvement of adrenergic, dopaminergic and serotonergic systems. Eur J Pharmacol 2012; 674: 307-314
  • 194 Gu L, Liu YJ, Wang YB, Yi LT. Role for monoaminergic systems in the antidepressant-like effect of ethanol extracts from Hemerocallis citrina . J Ethnopharmacol 2012; 139: 780-787
  • 195 Yi LT, Li J, Li HC, Zhou Y, Su BF, Yang KF, Jiang M, Zhang YT. Ethanol extracts from Hemerocallis citrina attenuate the decreases of brain-derived neurotrophic factor, TrkB levels in rat induced by corticosterone administration. J Ethnopharmacol 2012; 144: 328-334
  • 196 Liu XL, Luo L, Liu BB, Li J, Geng D, Liu Q, Yi LT. Ethanol extracts from Hemerocallis citrina attenuate the upregulation of proinflammatory cytokines and indoleamine 2,3-dioxygenase in rats. J Ethnopharmacol 2014; 153: 484-490
  • 197 Du B, Tang X, Liu F, Zhang C, Zhao G, Ren F, Leng X. Antidepressant-like effects of the hydroalcoholic extracts of Hemerocallis citrina and its potential active components. BMC Complement Altern Med 2014; 14: 326
  • 198 Xu P, Wang KZ, Lu C, Dong LM, Le Zhai J, Liao YH, Aibai S, Yang Y, Liu XM. Antidepressant-like effects and cognitive enhancement of the total phenols extract of Hemerocallis citrina Baroni in chronic unpredictable mild stress rats and its related mechanism. J Ethnopharmacol 2016; 194: 819-826
  • 199 Li CF, Chen SM, Chen XM, Mu RH, Wang SS, Geng D, Liu Q, Yi LT. ERK-dependent brain-derived neurotrophic factor regulation by hesperidin in mice exposed to chronic mild stress. Brain Res Bull 2016; 124: 40-47
  • 200 Shewale PB, Patil RA, Hiray YA. Antidepressant-like activity of anthocyanidins from Hibiscus rosa-sinensis flowers in tail suspension test and forced swim test. Indian J Pharmacol 2012; 44: 454-457
  • 201 da Silva AF, de Andrade JP, Bevilaqua LR, de Souza MM, Izquierdo I, Henriques AT, Zuanazzi JA. Anxiolytic-, antidepressant- and anticonvulsant-like effects of the alkaloid montanine isolated from Hippeastrum vittatum . Pharmacol Biochem Behav 2006; 85: 148-154
  • 202 Yamaura K, Nakayama N, Shimada M, Bi Y, Fukata H, Ueno K. Antidepressant-like effects of young green barley leaf (Hordeum vulgare L.) in the mouse forced swimming test. Pharmacognosy Res 2012; 4: 22-26
  • 203 Zanoli P, Rivasi M, Zavatti M, Brusiani F, Baraldi M. New insight in the neuropharmacological activity of Humulus lupulus L. J Ethnopharmacol 2005; 102: 102-106
  • 204 Dauncey EA, Irving JTW, Allkin R. A review of issues of nomenclature and taxonomy of Hypericum perforatum L. and Kewʼs Medicinal Plant Names Services. J Pharm Pharmacol 2019; 71: 4-14
  • 205 Heinrich M, Barnes J, Prieto JM, Gibbons S, Williamson EM. Fundamentals of Pharmacognosy and Phytotherapy, 3th ed. Amsterdam: Elsevier; 2018
  • 206 Butterweck V. Mechanism of action of St Johnʼs wort in depression. CNS Drugs 2003; 17: 539-562
  • 207 Wurglics M, Schubert-Zsilavecz M. Hypericum perforatum: A ‘modern’ herbal antidepressant. Clin Pharmacokinet 2006; 5: 449-468
  • 208 Bukhari IA, Dar A. Behavioral profile of Hypericum perforatum (St. Johnʼs Wort) extract. A comparison with standard antidepressants in animal models of depression. Eur Rev Med Pharmacol Sci 2013; 17: 1082-1089
  • 209 Zirak N, Shafiee M, Soltani G, Mirzaei M, Sahebkar A. Hypericum perforatum in the treatment of psychiatric and neurodegenerative disorders: current evidence and potential mechanisms of action. J Cell Physiol 2019; 234: 8496-8508
  • 210 Sánchez-Mateo CC, Bonkanka CX, Prado B, Rabanal RM. Antidepressant properties of some Hypericum canariense L. and Hypericum glandulosum Ait. extracts in the forced swimming test in mice. J Ethnopharmacol 2005; 97: 541-547
  • 211 Sánchez-Mateo CC, Prado B, Rabanal RM. Antidepressant effects of the methanol extract of several Hypericum species from the Canary Islands. J Ethnopharmacol 2002; 79: 119-127
  • 212 Viana A, do Rego JC, von Poser G, Ferraz A, Heckler AP, Costentin J, Kuze Rates SM. The antidepressant-like effect of Hypericum caprifoliatum Cham & Schlecht (Guttiferae) on forced swimming test results from an inhibition of neuronal monoamine uptake. Neuropharmacology 2005; 49: 1042-1052
  • 213 Centurião FB, Braga A, Machado FR, Tagliari B, Müller LG, Kolling J, von Poser G, Wyse AT, Rates SM. Study of antidepressant-like activity of an enriched phloroglucinol fraction obtained from Hypericum caprifoliatum . Pharm Biol 2014; 52: 105-110
  • 214 Viana AF, do Rego JC, Munari L, Dourmap N, Heckler AP, Costa TD, von Poser GL, Costentin J, Rates SM. Hypericum caprifoliatum (Guttiferae) Cham. & Schltd.: a species native to South Brazil with antidepressant-like activity. Fundam Clin Pharmacol 2006; 20: 507-514
  • 215 Viana A, Rates S, Naudin B, Janin F, Costentin J, do Rego JC. Effects of acute or 3-day treatments of Hypericum caprifoliatum Cham. & Schltdt. (Guttiferae) extract or of two established antidepressants on basal and stress-induced increase in serum and brain corticosterone levels. J Psychopharmacol 2008; 22: 681-690
  • 216 Haas JS, Stolz ED, Betti AH, Stein AC, Schripsema J, Poser GL, Rates SM. The anti-immobility effect of hyperoside on the forced swimming test in rats is mediated by the D2-like receptors activation. Planta Med 2011; 77: 334-339
  • 217 Stolz ED, Viana AF, Hasse DR, von Poser GL, do Rego JC, Rates SM. Uliginosin B presents antinociceptive effect mediated by dopaminergic and opioid systems in mice. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39: 80-87
  • 218 Diana G, Capasso A, Quaranta E, De Feo V. Differential effects of three species of Hypericum in an open field test. Phytother Res 2007; 21: 215-219
  • 219 do Rego JC, Benkiki N, Chosson E, Kabouche Z, Seguin E, Costentin J. Antidepressant-like effect of hyperfoliatin, a polyisoprenylated phloroglucinol derivative from Hypericum perfoliatum (Clusiaceae) is associated with an inhibition of neuronal monoamines uptake. Eur J Pharmacol 2007; 569: 197-203
  • 220 Stein AC, Viana AF, Müller LG, Nunes JM, Stolz ED, Do Rego JC, Costentin J, von Poser GL, Rates SM. Uliginosin B, a phloroglucinol derivative from Hypericum polyanthemum: a promising new molecular pattern for the development of antidepressant drugs. Behav Brain Res 2012; 228: 66-73
  • 221 Li J, Geng D, Xu J, Weng LJ, Liu Q, Yi LT. Antidepressant-like effect of macranthol isolated from Illicium dunnianum tutch in mice. Eur J Pharmacol 2013; 707: 112-119
  • 222 Luo L, Liu XL, Li J, Mu RH, Liu Q, Yi LT, Geng D. Macranthol promotes hippocampal neuronal proliferation in mice via BDNF-TrkB-PI3K/Akt signaling pathway. Eur J Pharmacol 2015; 762: 357-363
  • 223 Weng L, Dong S, Wang S, Yi L, Geng D. Macranthol attenuates lipopolysaccharide-induced depressive-like behaviors by inhibiting neuroinflammation in prefrontal cortex. Physiol Behav 2019; 204: 33-40
  • 224 Sela VR, Hattanda I, Albrecht CM, De Almeida CB, Obici S, Cortez DA, Audi EA. Effect of xanthone from Kielmeyera coriacea stems on serotonergic neurons of the median raphe nucleus. Phytomedicine 2010; 17: 274-278
  • 225 Galdino PM, Nascimento MVM, Sampaio BL, Ferreira RN, Paula JR, Costa EA. Antidepressant-like effect of Lafoensia pacari A. St.-Hil. ethanolic extract and fractions in mice. J Ethnopharmacol 2009; 124: 581-585
  • 226 Galdino PM, Carvalho AAV, Florentino IF, Martins JLR, Gazola AC, de Paula JR, de Paula JAM, Torres LMB, Costa EA, de Lima TCM. Involvement of monoaminergic systems in the antidepressant-like properties of Lafoensia pacari A. St. Hil. J Ethnopharmacol 2015; 170: 218-225
  • 227 Cavanagh HM, Wilkinson JM. Biological activities of lavender essential oil. Phytother Res 2002; 16: 301-308
  • 228 Hritcu L, Cioanca O, Hancianu M. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats. Phytomedicine 2012; 19: 529-534
  • 229 Rahmati B, Kiasalari Z, Roghani M, Khalili M, Ansari F. Antidepressant and anxiolytic activity of Lavandula officinalis aerial parts hydroalcoholic extract in scopolamine-treated rats. Pharm Biol 2017; 55: 958-965
  • 230 Gostner JM, Ganzera M, Becker K, Geisler S, Schroecksnadel S, Überall F, Schennach H, Fuchs D. Lavender oil suppresses indoleamine 2,3-dioxygenase activity in human PBMC. BMC Complement Altern Med 2014; 14: 503
  • 231 López V, Nielsen B, Solas M, Ramírez MJ, Jäger AK. Exploring pharmacological mechanisms of lavender (Lavandula angustifolia) essential oil on central nervous system targets. Front Pharmacol 2017; 8: 280
  • 232 Caputo L, Reguilon MD, Miñarro J, De Feo V, Rodríguez-Arias M. Lavandula angustifolia essential oil and linalool counteract social aversion induced by social defeat. Molecules 2018; 23: E2694
  • 233 Sanna MD, Les F, Lopez V, Galeotti N. Lavender (Lavandula angustifolia Mill.) essential oil alleviates neuropathic pain in mice with spared nerve injury. Front Pharmacol 2019; 10: 472
  • 234 Ai Z, Cheng AF, Yu YT, Yu LJ, Jin W. Antidepressant-like behavioral, anatomical, and biochemical effects of petroleum ether extract from maca (Lepidium meyenii) in mice exposed to chronic unpredictable mild stress. J Med Food 2014; 17: 535-542
  • 235 Herraiz T, Guillén H. Monoamine oxidase-A inhibition and associated antioxidant activity in plant extracts with potential antidepressant actions. Biomed Res Int 2018; 2018: 4810394
  • 236 Zhang E, Yau SY, Lau BWM, Ma H, Lee TMC, Chang RCC, So KF. Synaptic plasticity, but not hippocampal neurogenesis, mediated the counteractive effect of wolfberry on depression in rats (1). Cell Transplant 2012; 21: 2635-2649
  • 237 Bhattamisra SK, Khanna VK, Agrawal AK, Singh PN, Singh SK. Antidepressant activity of standardised extract of Marsilea minuta Linn. J Ethnopharmacol 2008; 117: 51-57
  • 238 Shakeri A, Sahebkar A, Javadi B. Melissa officinalis L.–a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 2016; 188: 204-228
  • 239 López V, Martín S, Gómez-Serranillos MP, Carretero ME, Jäger AK, Calvo MI. Neuroprotective and neurological properties of Melissa officinalis . Neurochem Res 2009; 34: 1955-1961
  • 240 Emamghoreishi M, Talebianpour M. Antidepressant effect of Melissa officinalis in the forced swimming test. Daru J Pharm Sci 2009; 17: 42-47
  • 241 Taiwo AE, Leite FB, Lucena GM, Barros M, Silveira D, Silva MV, Ferreira VM. Anxiolytic and antidepressant-like effects of Melissa officinalis (lemon balm) extract in rats: influence of administration and gender. Indian J Pharmacol 2012; 44: 189-192
  • 242 Lin SH, Chou ML, Chen WC, Lai YS, Lu KH, Hao CW, Sheen LY. A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter. J Ethnopharmacol 2015; 175: 266-272
  • 243 Patro G, Bhattamisra SK, Mohanty BK. Effects of Mimosa pudica L. leaves extract on anxiety, depression and memory. Avicenna J Phytomed 2016; 6: 696-710
  • 244 Idayu NF, Hidayat MT, Moklas MAM, Sharida F, Raudzah ARN, Shamima AR, Apryani E. Antidepressant-like effect of mitragynine isolated from Mitragyna speciosa Korth in mice model of depression. Phytomedicine 2011; 18: 402-407
  • 245 Ishola IO, Akinyede AA, Sholarin AM. Antidepressant and anxiolytic properties of the methanolic extract of Momordica charantia Linn (Cucurbitaceae) and its mechanism of action. Drug Res (Stuttg) 2014; 64: 368-376
  • 246 Zhang JH, Xin HL, Xu YM, Shen Y, He YQ, Hsien-Yeh, Lin B, Song HT, Juan-Liu. Yang HY, Qin LP, Zhang QY, Du J. Morinda officinalis How.–A comprehensive review of traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 2018; 213: 230-255
  • 247 Zhang ZQ, Yuan L, Yang M, Luo ZP, Zhao YM. The effect of Morinda officinalis How, a Chinese traditional medicinal plant, on the DRL 72-s schedule in rats and the forced swimming test in mice. Pharmacol Biochem Behav 2002; 72: 39-43
  • 248 Li YF, Yuan L, Xu YK, Yang M, Zhao YM, Luo ZP. Antistress effect of oligosaccharides extracted from Morinda officinalis in mice and rats. Acta Pharmacol Sin 2001; 22: 1084-1088
  • 249 Li YF, Gong ZH, Yang M, Zhao YM, Luo ZP. Inhibition of the oligosaccharides extracted from Morinda officinalis, a Chinese traditional herbal medicine, on the corticosterone induced apoptosis in PC12 cells. Life Sci 2003; 72: 933-942
  • 250 Li YF, Liu YQ, Yang M, Wang HL, Huang WC, Zhao YM, Luo ZP. The cytoprotective effect of inulin-type hexasaccharide extracted from Morinda officinalis on PC12 cells against the lesion induced by corticosterone. Life Sci 2004; 75: 1531-1538
  • 251 Xu LZ, Xu DF, Han Y, Liu LJ, Sun CY, Deng JH, Zhang RX, Yuan M, Zhang SZ, Li ZM, Xu Y, Li JS, Xie SH, Li SX, Zhang HY, Lu L. BDNF-GSK-3β-β-catenin pathway in the mPFC is involved in antidepressant-like effects of Morinda officinalis oligosaccharides in rats. Int J Neuropsychopharmacol 2017; 20: 83-93 Erratum in: Int J Neuropsychopharmacol 2018; 21: 499 Erratum in: Int J Neuropsychopharmacol 2018; 21: 499
  • 252 Kaur G, Invally M, Sanzagiri R, Buttar HS. Evaluation of the antidepressant activity of Moringa oleifera alone and in combination with fluoxetine. J Ayurveda Integr Med 2015; 6: 273-279
  • 253 Lim DW, Kim YT, Park JH, Baek NI, Han D. Antidepressant-like effects of the ethyl acetate soluble fraction of the root bark of Morus alba on the immobility behavior of rats in the forced swim test. Molecules 2014; 19: 7981-7989
  • 254 Rana DG, Galani VJ. Dopamine mediated antidepressant effect of Mucuna pruriens seeds in various experimental models of depression. Ayu 2014; 35: 90-97
  • 255 Dhingra D, Sharma A. Antidepressant-like activity of n-hexane extract of nutmeg (Myristica fragrans) seeds in mice. J Med Food 2006; 9: 84-89
  • 256 Moinuddin G, Devi K, Khajuria DK. Evaluation of the anti-depressant activity of Myristica fragrans (nutmeg) in male rats. Avicenna J Phytomed 2012; 2: 72-78
  • 257 Jalali S, Zarrinhaghighi A, Sadraei S, Ghasemi Y, Sakhteman A, Faridi P. A system pharmacology study for deciphering anti depression activity of Nardostachys jatamansi . Curr Drug Metab 2018; 19: 469-476
  • 258 Dhingra D, Goyal PK. Inhibition of MAO and GABA: probable mechanisms for antidepressant-like activity of Nardostachys jatamansi DC in mice. Indian J Exp Biol 2008; 46: 212-218
  • 259 Sugimoto Y, Furutani S, Nishimura K, Itoh A, Tanahashi T, Nakajima H, Oshiro H, Sun S, Yamada J. Antidepressant-like effects of neferine in the forced swimming test involve the serotonin1A (5-HT1A) receptor in mice. Eur J Pharmacol 2010; 634: 62-67
  • 260 Sugimoto Y, Nishimura K, Itoh A, Tanahashi T, Nakajima H, Oshiro H, Sun S, Toda T, Yamada J. Serotonergic mechanisms are involved in antidepressant-like effects of bisbenzylisoquinolines liensinine and its analogs isolated from the embryo of Nelumbo nucifera Gaertner seeds in mice. J Pharm Pharmacol 2015; 67: 1716-1722
  • 261 Rajput MA, Khan RA. Phytochemical screening, acute toxicity, anxiolytic and antidepressant activities of the Nelumbo nucifera fruit. Metab Brain Dis 2017; 32: 743-749
  • 262 Chatterjee M, Verma P, Maurya R, Palit G. Evaluation of ethanol leaf extract of Ocimum sanctum in experimental models of anxiety and depression. Pharm Biol 2011; 49: 477-483
  • 263 Mao Q, Huang Z, Ip S, Che C. Antidepressant-like effect of ethanol extract from Paeonia lactiflora in mice. Phytother Res 2008; 22: 1496-1499
  • 264 Mao QQ, Ip SP, Xian YF, Hu H, Che CT. Anti-depressant-like effect of peony: a mini-review. Pharm Biol 2012; 50: 72-77
  • 265 Mao QQ, Ip SP, Ko KM, Tsai SH, Xian YF, Che CT. Effects of peony glycosides on mice exposed to chronic unpredictable stress: further evidence for antidepressant-like activity. J Ethnopharmacol 2009; 124: 316-320
  • 266 Song J, Hou X, Hu X, Lu C, Liu C, Wang J, Liu W, Teng L, Wang D. Not only serotonergic system, but also dopaminergic system involved in albiflorin against chronic unpredictable mild stress-induced depression-like behavior in rats. Chem Biol Interact 2015; 242: 211-217
  • 267 Rajabian A, Rameshrad M, Hosseinzadeh H. Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: a patent review. Expert Opin Ther Pat 2019; 29: 55-72
  • 268 Wang G, Lei C, Tian Y, Wang Y, Zhang L, Zhang R. Rb1, the primary active ingredient in Panax ginseng C.A. Meyer, exerts antidepressant-like effects via the BDNF-Trkb-CREB Pathway. Front Pharmacol 2019; 10: 1034
  • 269 Jin Y, Cui R, Zhao L, Fan J, Li B. Mechanisms of Panax ginseng action as an antidepressant. Cell Prolif 2019; 52: e12696
  • 270 Choi JH, Lee MJ, Jang M, Kim HJ, Lee S, Lee SW, Kim YO, Cho IH. Panax ginseng exerts antidepressant-like effects by suppressing neuroinflammatory response and upregulating nuclear factor erythroid 2 related factor 2 signaling in the amygdala. J Ginseng Res 2018; 42: 107-115
  • 271 Boonlert W, Benya-Aphikul H, Umka Welbat J, Rodsiri R. Ginseng extract G115 attenuates ethanol-induced depression in mice by increasing brain BDNF levels. Nutrients 2017; 9: E931
  • 272 Wang W, Liu X, Liu J, Cai E, Zhao Y, Li H, Zhang L, Li P, Gao Y. Sesquiterpenoids from the root of Panax ginseng attenuates lipopolysaccharide-induced depressive-like behavior through the brain-derived neurotrophic factor/tropomyosin-related kinase b and sirtuin type 1/nuclear factor-κB signaling pathways. J Agric Food Chem 2018; 66: 265-271
  • 273 Chen L, Wang X, Lin ZX, Dai JG, Huang YF, Zhao YN. Preventive effects of ginseng total saponins on chronic corticosterone-induced impairment in astrocyte structural plasticity and hippocampal atrophy. Phytother Res 2017; 31: 1341-1348
  • 274 Jiang B, Xiong Z, Yang J, Wang W, Wang Y, Hu ZL, Wang F, Chen JG. Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br J Pharmacol 2012; 166: 1872-1887
  • 275 Wang GL, He ZM, Zhu HY, Gao YG, Zhao Y, Yang H, Zhang LX. Involvement of serotonergic, noradrenergic and dopaminergic systems in the antidepressant-like effect of ginsenoside Rb1, a major active ingredient of Panax ginseng C.A. Meyer. J Ethnopharmacol 2017; 204: 118-124
  • 276 Wang GL, Wang YP, Zheng JY, Zhang LX. Monoaminergic and aminoacidergic receptors are involved in the antidepressant-like effect of ginsenoside Rb1 in mouse hippocampus (CA3) and prefrontal cortex. Brain Res 2018; 1699: 44-53
  • 277 Mou Z, Huang Q, Chu SF, Zhang MJ, Hu JF, Chen NH, Zhang JT. Antidepressive effects of ginsenoside Rg1 via regulation of HPA and HPG axis. Biomed Pharmacother 2017; 92: 962-971
  • 278 Xia CY, Chu SF, Zhang S, Gao Y, Ren Q, Lou YX, Luo P, Tian MT, Wang ZQ, Du GH, Tomioka Y, Yamakuni T, Zhang Y, Wang ZZ, Chen NH. Ginsenoside Rg1 alleviates corticosterone-induced dysfunction of gap junctions in astrocytes. J Ethnopharmacol 2017; 208: 207-213
  • 279 Xu D, Wang C, Zhao W, Gao S, Cui Z. Antidepressant-like effects of ginsenoside Rg5 in mice: involving of hippocampus BDNF signaling pathway. Neurosci Lett 2017; 645: 97-105
  • 280 Xie W, Meng X, Zhai Y, Zhou P, Ye T, Wang Z, Sun G, Sun X. Panax notoginseng saponins: a review of its mechanisms of antidepressant or anxiolytic effects and network analysis on phytochemistry and pharmacology. Molecules 2018; 23: E940
  • 281 Zhang H, Chen Z, Zhong Z, Gong W, Li J. Total saponins from the leaves of Panax notoginseng inhibit depression on mouse chronic unpredictable mild stress model by regulating circRNA expression. Brain Behav 2018; 8: e01127
  • 282 Campos AR, Barros AIS, Albuquerque FAA, Leal LKAM, Rao VSN. Acute effects of guarana (Paullinia cupana Mart.) on mouse behaviour in forced swimming and open field tests. Phytother Res 2005; 19: 441-443
  • 283 Lee HC, Ko HK, Huang BE, Chu YH, Huang SY. Antidepressant-like effects of Perilla frutescens seed oil during a forced swimming test. Food Funct 2014; 5: 990-996
  • 284 Ji WW, Li RP, Li M, Wang SY, Zhang X, Niu XX, Li W, Yan L, Wang Y, Fu Q, Ma SP. Antidepressant-like effect of essential oil of Perilla frutescens in a chronic, unpredictable, mild stress-induced depression model mouse. Chin J Nat Med 2014; 12: 753-759
  • 285 Dhingra D, Joshi P, Gupta A, Chhillar R. Possible involvement of monoaminergic neurotransmission in antidepressant-like activity of Emblica officinalis fruits in mice. CNS Neurosci Ther 2012; 18: 419-425
  • 286 Xie H, Jin D, Kang Y, Shi X, Liu H, Shen H, Chen J, Yan M, Liu J, Pan S. The effect of Piper laetispicum extract (EAE-P) during chronic unpredictable mild stress based on interrelationship of inflammatory cytokines, apoptosis cytokines and neurotrophin in the hippocampus. BMC Complement Altern Med 2015; 15: 240
  • 287 Yao CY, Wang J, Dong D, Qian FG, Xie J, Pan SL. Laetispicine, an amide alkaloid from Piper laetispicum, presents antidepressant and antinociceptive effects in mice. Phytomedicine 2009; 16: 823-829
  • 288 Xie H, Yan MC, Jin D, Liu JJ, Yu M, Dong D, Cai CC, Pan SL. Studies on antidepressant and antinociceptive effects of ethyl acetate extract from Piper laetispicum and structure-activity relationship of its amide alkaloids. Fitoterapia 2011; 82: 1086-1092
  • 289 Hritcu L, Noumedem JA, Cioanca O, Hancianu M, Postu P, Mihasan M. Anxiolytic and antidepressant profile of the methanolic extract of Piper nigrum fruits in beta-amyloid (1–42) rat model of Alzheimerʼs disease. Behav Brain Funct 2015; 11: 13
  • 290 Li Q, Qu FL, Gao Y, Jiang YP, Rahman K, Lee KH, Han T, Qin LP. Piper sarmentosum Roxb. produces antidepressant-like effects in rodents, associated with activation of the CREB-BDNF-ERK signaling pathway and reversal of HPA axis hyperactivity. J Ethnopharmacol 2017; 199: 9-19
  • 291 Cícero Bezerra Felipe F, Trajano Sousa Filho J, de Oliveira Souza LE, Alexandre Silveira J, Esdras de Andrade Uchoa D, Rocha Silveira E, Deusdênia Loiola Pessoa O, de Barros Viana GS. Piplartine, an amide alkaloid from Piper tuberculatum, presents anxiolytic and antidepressant effects in mice. Phytomedicine 2007; 14: 605-612
  • 292 Martins J, Suku B. Phytochemistry and pharmacology of anti-depressant medicinal plants: A review. Biomed Pharmacother 2018; 104: 343-365
  • 293 Bettio LE, Machado DG, Cunha MP, Capra JC, Missau FC, Santos AR, Pizzolatti MG, Rodrigues AL. Antidepressant-like effect of extract from Polygala paniculata: involvement of the monoaminergic systems. Pharm Biol 2011; 49: 1277-1285
  • 294 Capra JC, Cunha MP, Machado DG, Zomkowski AD, Mendes BG, Santos AR, Pizzolatti MG, Rodrigues AL. Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala sabulosa (Polygalaceae) in mice: evidence for the involvement of monoaminergic systems. Eur J Pharmacol 2010; 643: 232-238
  • 295 Zhou Y, Ma C, Li BM, Sun C. Polygala japonica Houtt. reverses depression-like behavior and restores reduced hippocampal neurogenesis in chronic stress mice. Biomed Pharmacother 2018; 99: 986-996
  • 296 Hu Y, Liu P, Guo DH, Rahman K, Wang DX, Xie TT. Antidepressant effects of the extract YZ-50 from Polygala tenuifolia in chronic mild stress treated rats and its possible mechanisms. Pharm Biol 2010; 48: 794-800
  • 297 Hu Y, Liu M, Liu P, Guo DH, Wei RB, Rahman K. Possible mechanism of the antidepressant effect of 3, 6′-disinapoyl sucrose from Polygala tenuifolia Willd. J Pharm Pharmacol 2011; 63: 869-874
  • 298 Aragão GF, Carneiro LM, Junior AP, Vieira LC, Bandeira PN, Lemos TL, Viana GS. A possible mechanism for anxiolytic and antidepressant effects of alpha- and beta-amyrin from Protium heptaphyllum (Aubl.) March. Pharmacol Biochem Behav 2006; 85: 827-834
  • 299 Piato AL, Rizon LP, Martins BS, Nunes DS, Elisabetsky E. Antidepressant profile of Ptychopetalum olacoides Bentham (Marapuama) in mice. Phytother Res 2009; 23: 519-524
  • 300 Piato AL, Detanico BC, Jesus JF, Lhullier FL, Nunes DS, Elisabetsky E. Effects of Marapuama in the chronic mild stress model: further indication of antidepressant properties. J Ethnopharmacol 2008; 118: 300-304
  • 301 Yan B, Wang DY, Xing DM, Ding Y, Wang RF, Lei F, Du LJ. The antidepressant effect of ethanol extract of radix puerariae in mice exposed to cerebral ischemia reperfusion. Pharmacol Biochem Behav 2004; 78: 319-325
  • 302 Ali BH, Bashir AK, Tanira MO, Medvedev AE, Jarrett N, Sandler M, Glover V. Effect of extract of Rhazya stricta, a traditional medicinal plant, on rat brain tribulin. Pharmacol Biochem Behav 1998; 59: 671-675
  • 303 Ali BH, Bashir AK, Tanira MO. The effect of Rhazya stricta Decne, a traditional medicinal plant, on the forced swimming test in rats. Pharmacol Biochem Behav 1998; 59: 547-550
  • 304 Tirupathi H, Golla P. To evaluate and compare antidepressant activity of Rosa damascena in mice by using forced swimming test. Int J Basic Clin Pharmacol 2016; 5: 1949-1952
  • 305 Akram M, Riaz M, Munir N, Akhter N, Zafar S, Jabeen F, Ali Shariati M, Akhtar N, Riaz Z, Altaf SH, Daniyal M, Zahid R, Said Khan F. Chemical constituents, experimental and clinical pharmacology of Rosa damascena: a literature review. J Pharm Pharmacol 2020; 72: 161-174
  • 306 Machado DG, Bettio LE, Cunha MP, Capra JC, Dalmarco JB, Pizzolatti MG, Rodrigues AL. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33: 642-650
  • 307 Machado DG, Cunha MP, Neis VB, Balen GO, Colla AR, Grando J, Brocardo PS, Bettio LE, Dalmarco JB, Rial D, Prediger RD, Pizzolatti MG, Rodrigues AL. Rosmarinus officinalis L. hydroalcoholic extract, similar to fluoxetine, reverses depressive-like behavior without altering learning deficit in olfactory bulbectomized mice. J Ethnopharmacol 2012; 143: 158-169
  • 308 Machado DG, Neis VB, Balen GO, Colla A, Cunha MP, Dalmarco JB, Pizzolatti MG, Prediger RD, Rodrigues AL. Antidepressant-like effect of ursolic acid isolated from Rosmarinus officinalis L. in mice: evidence for the involvement of the dopaminergic system. Pharmacol Biochem Behav 2012; 103: 204-211
  • 309 Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Bettio LE, Oliveira A, Pazini FL, Dalmarco JB, Simionatto EL, Pizzolatti MG, Rodrigues AL. Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chem 2013; 136: 999-1005
  • 310 Sasaki K, El Omri A, Kondo S, Han J, Isoda H. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav Brain Res 2013; 238: 86-94
  • 311 Ferlemi AV, Katsikoudi A, Kontogianni VG, Kellici TF, Iatrou G, Lamari FN, Tzakos AG, Margarity M. Rosemary tea consumption results to anxiolytic- and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies. Chem Biol Interact 2015; 237: 47-57
  • 312 Abdelhalim A, Karim N, Chebib M, Aburjai T, Khan I, Johnston GA, Hanrahan J. Antidepressant, anxiolytic and antinociceptive activities of constituents from Rosmarinus officinalis . J Pharm Pharm Sci 2015; 18: 448-459
  • 313 Guo Y, Xie J, Li X, Yuan Y, Zhang L, Hu W, Luo H, Yu H, Zhang R. Antidepressant effects of rosemary extracts associate with anti-inflammatory effect and rebalance of gut microbiota. Front Pharmacol 2018; 9: 1126
  • 314 Carbajal D, Ravelo Y, Molina V, Mas R, Arruzazabala ML. D-004, a lipid extract from royal palm fruit, exhibits antidepressant effects in the forced swim test and the tail suspension test in mice. Pharmacol Biochem Behav 2009; 92: 465-468
  • 315 Braida D, Capurro V, Zani A, Rubino T, Viganò D, Parolaro D, Sala M. Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents. Br J Pharmacol 2009; 157: 844-853
  • 316 Mora S, Millán R, Lungenstrass H, Díaz-Véliz G, Morán JA, Herrera-Ruiz M, Tortoriello J. The hydroalcoholic extract of Salvia elegans induces anxiolytic- and antidepressant-like effects in rats. J Ethnopharmacol 2006; 106: 76-81
  • 317 Seol GH, Shim HS, Kim PJ, Moon HK, Lee KH, Shim I, Suh SH, Min SS. Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats. J Ethnopharmacol 2010; 130: 187-190
  • 318 Loria MJ, Ali Z, Abe N, Sufka KJ, Khan IA. Effects of Sceletium tortuosum in rats. J Ethnopharmacol 2014; 155: 731-735
  • 319 Dimpfel W, Schombert L, Gericke N. Electropharmacogram of Sceletium tortuosum extract based on spectral local field power in conscious freely moving rats. J Ethnopharmacol 2016; 177: 140-147
  • 320 Carpenter JM, Jourdan MK, Fountain EM, Ali Z, Abe N, Khan IA, Sufka KJ. The effects of Sceletium tortuosum (L.) N.E. Br. extract fraction in the chick anxiety-depression model. J Ethnopharmacol 2016; 193: 329-332
  • 321 Krstenansky JL. Mesembrine alkaloids: Review of their occurrence, chemistry, and pharmacology. J Ethnopharmacol 2017; 195: 10-19
  • 322 Harvey AL, Young LC, Viljoen AM, Gericke NP. Pharmacological actions of the South African medicinal and functional food plant Sceletium tortuosum and its principal alkaloids. J Ethnopharmacol 2011; 137: 1124-1129
  • 323 Machado DG, Kaster MP, Binfaré RW, Dias M, Santos AR, Pizzolatti MG, Brighente IM, Rodrigues AL. Antidepressant-like effect of the extract from leaves of Schinus molle L. in mice: evidence for the involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 421-428
  • 324 Machado DG, Bettio LE, Cunha MP, Santos AR, Pizzolatti MG, Brighente IM, Rodrigues AL. Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. in mice: evidence for the involvement of the serotonergic and noradrenergic systems. Eur J Pharmacol 2008; 587: 163-168
  • 325 Yan T, Xu M, Wan S, Wang M, Wu B, Xiao F, Bi K, Jia Y. Schisandra chinensis produces the antidepressant-like effects in repeated corticosterone-induced mice via the BDNF/TrkB/CREB signaling pathway. Psychiatry Res 2016; 243: 135-142
  • 326 Yan T, He B, Wan S, Xu M, Yang H, Xiao F, Bi K, Jia Y. Antidepressant-like effects and cognitive enhancement of Schisandra chinensis in chronic unpredictable mild stress mice and its related mechanism. Sci Rep 2017; 7: 6903
  • 327 Yan T, Xu M, Wu B, Liao Z, Liu Z, Zhao X, Bi K, Jia Y. The effect of Schisandra chinensis extracts on depression by noradrenergic, dopaminergic, GABAergic and glutamatergic systems in the forced swim test in mice. Food Funct 2016; 7: 2811-2819
  • 328 Xu C, Luo L, Tan RX. Antidepressant effect of three traditional Chinese medicines in the learned helplessness model. J Ethnopharmacol 2004; 91: 345-349
  • 329 Kosari-Nasab M, Babri S, Fatehi-Gharehlar L, Doosti MH, Pakzad S. Involvement of GABAergic system in regulation of the anxiolytic- and antidepressant-like effects of Scrophularia striata extract in rats. Pharm Biol 2013; 51: 581-588
  • 330 Zhang R, Guo L, Ji Z, Li X, Zhang C, Ma Z, Fu Q, Qu R, Ma S. Radix scutellariae attenuates CUMS-induced depressive-like behavior by promoting neurogenesis via cAMP/PKA pathway. Neurochem Res 2018; 43: 2111-2120
  • 331 Zhang R, Ma Z, Liu K, Li Y, Liu D, Xu L, Deng X, Qu R, Ma Z, Ma S. Baicalin exerts antidepressant effects through Akt/FOXG1 pathway promoting neuronal differentiation and survival. Life Sci 2019; 221: 241-248
  • 332 Limanaqi F, Biagioni F, Busceti CL, Polzella M, Fabrizi C, Fornai F. Potential antidepressant effects of Scutellaria baicalensis, Hericium erinaceus and Rhodiola rosea . Antioxidants (Basel) 2020; 9: E234
  • 333 Adebiyi RA, Elsa AT, Agaie BM, Etuk EU. Antinociceptive and antidepressant like effects of Securidaca longepedunculata root extract in mice. J Ethnopharmacol 2006; 107: 234-239
  • 334 Chiang HM, Chen HC, Wu CS, Wu PY, Wen KC. Rhodiola plants: Chemistry and biological activity. J Food Drug Anal 2015; 23: 359-369
  • 335 Recio MC, Giner RM, Máñez S. Immunmodulatory and antiproliferative properties of Rhodiola species. Planta Med 2016; 82: 952-960
  • 336 Tao H, Wu X, Cao J, Peng Y, Wang A, Pei J, Xiao J, Wang S, Wang Y. Rhodiola species: A comprehensive review of traditional use, phytochemistry, pharmacology, toxicity, and clinical study. Med Res Rev 2019; 39: 1779-1850
  • 337 Amsterdam JD, Panossian AG. Rhodiola rosea L. as a putative botanical antidepressant. Phytomedicine 2016; 23: 770-783
  • 338 Yang SJ, Yu HY, Kang DY, Ma ZQ, Qu R, Fu Q, Ma SP. Antidepressant-like effects of salidroside on olfactory bulbectomy-induced pro-inflammatory cytokine production and hyperactivity of HPA axis in rats. Pharmacol Biochem Behav 2014; 124: 451-457
  • 339 van Diermen D, Marston A, Bravo J, Reist M, Carrupt PA, Hostettmann K. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J Ethnopharmacol 2009; 122: 397-401
  • 340 Panossian AG, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 2010; 17: 481-493
  • 341 Alonso-Castro AJ, Alba-Betancourt C, Yáñez-Barrientos E, Luna-Rocha C, Páramo-Castillo AS, Aragón-Martínez OH, Zapata-Morales JR, Cruz-Jiménez G, Gasca-Martínez D, González-Ibarra AA, Álvarez-Camacho DA, Devezé-Álvarez MA. Diuretic activity and neuropharmacological effects of an ethanol extract from Senna septemtrionalis (Viv.) H.S. Irwin & Barneby (Fabaceae). J Ethnopharmacol 2019; 239: 111923
  • 342 Valli M, Betti AH, Danuello A, Pivatto M, Centurião F, Antonio CB, Rates SMK, Bolzani VS. Pyridinic analog of the natural product (−)-spectaline as potential adjuvant for the treatment of central nervous system disorders. Bioorg Med Chem Lett 2015; 25: 2247-2250
  • 343 Datusalia AK, Sharma S, Kalra P, Samal MK. Antidepressant-like potential of Sida tiagii Bhandari fruits in mice. J Health Sci 2009; 55: 641-648
  • 344 Rodrigues AL, da Silva GL, Mateussi AS, Fernandes ES, Miguel OG, Yunes RA, Calixto JB, Santos AR. Involvement of monoaminergic system in the antidepressant-like effect of the hydroalcoholic extract of Siphocampylus verticillatus . Life Sci 2002; 70: 1347-1358
  • 345 Momin R, Mohan M. Involvement of central noradrenaline, serotonin and dopamine system in the antidepressant activity of fruits of Solanum torvum (Solanaceae). Nat Prod Res 2012; 26: 416-422
  • 346 Mohan M, Attarde D, Momin R, Kasture S. Antidepressant, anxiolytic and adaptogenic activity of torvanol A: an isoflavonoid from seeds of Solanum torvum . Nat Prod Res 2013; 27: 2140-2143
  • 347 Vilela FC, Padilha MM, Alves-da-Silva G, Soncini R, Giusti-Paiva A. Antidepressant-like activity of Sonchus oleraceus in mouse models of immobility tests. J Med Food 2010; 13: 219-222
  • 348 Khulbe A, Pandey S, Sah SP. Antidepressant-like action of the hydromethanolic flower extract of Tagetes erecta L. in mice and its possible mechanism of action. Indian J Pharmacol 2013; 45: 386-390
  • 349 Guadarrama-Cruz G, Alarcón-Aguilar FJ, Lezama-Velasco R, Vázquez-Palacios G, Bonilla-Jaime H. Antidepressant-like effects of Tagetes lucida Cav. in the forced swimming test. J Ethnopharmacol 2008; 120: 277-281
  • 350 Guadarrama-Cruz G, Alarcón-Aguilar FJ, Vega-Ávila E, Vázquez-Palacios G, Bonilla-Jaime H. Antidepressant-like effect of Tagetes lucida Cav. extract in rats: involvement of the serotonergic system. Am J Chin Med 2012; 40: 753-768
  • 351 Bonilla-Jaime H, Guadarrama-Cruz G, Alarcon-Aguilar FJ, Limón-Morales O, Vazquez-Palacios G. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT1A and 5-HT2A receptors. J Nat Med 2015; 69: 463-470
  • 352 Cárdenas J, Reyes-Pérez V, Hernández-Navarro MD, Dorantes-Barrón AM, Almazán S, Estrada-Reyes R. Anxiolytic- and antidepressant-like effects of an aqueous extract of Tanacetum parthenium L. Schultz-Bip (Asteraceae) in mice. J Ethnopharmacol 2017; 200: 22-30
  • 353 Dhingra D, Valecha R. Evaluation of antidepressant-like activity of aqueous and ethanolic extracts of Terminalia bellirica Roxb. fruits in mice. Indian J Exp Biol 2007; 45: 610-616
  • 354 Messaoudi M, Bisson JF, Nejdi A, Rozan P, Javelot H. Antidepressant-like effects of a cocoa polyphenolic extract in Wistar-Unilever rats. Nutr Neurosci 2008; 11: 269-276
  • 355 Morteza-Semnani K, Mahmoudi M, Riahi G. Effects of essential oils and extracts from certain Thymus species on swimming performance in mice. Pharm Biol 2007; 45: 464-467
  • 356 Doosti MH, Ahmadi K, Fasihi-Ramandi M. The effect of ethanolic extract of Thymus kotschyanus on cancer cell growth in vitro and depression-like behavior in the mouse. J Tradit Complement Med 2018; 8: 89-94
  • 357 Dhingra D, Goyal PK. Evidences for the involvement of monoaminergic and GABAergic systems in antidepressant-like activity of Tinospora cordifolia in mice. Indian J Pharm Sci 2008; 70: 761-767
  • 358 Campos MM, Fernandes ES, Ferreira J, Santos AR, Calixto JB. Antidepressant-like effects of Trichilia catigua (Catuaba) extract: evidence for dopaminergic-mediated mechanisms. Psychopharmacology (Berl) 2005; 182: 45-53
  • 359 Chassot JM, Longhini R, Gazarini L, Mello JC, de Oliveira RM. Preclinical evaluation of Trichilia catigua extracts on the central nervous system of mice. J Ethnopharmacol 2011; 137: 1143-1148
  • 360 Taciany Bonassoli V, Micheli Chassot J, Longhini R, Milani H, Mello JC, de Oliveira RM. Subchronic administration of Trichilia catigua ethyl-acetate fraction promotes antidepressant-like effects and increases hippocampal cell proliferation in mice. J Ethnopharmacol 2012; 143: 179-184
  • 361 Bernardo J, Ferreres F, Gil-Izquierdo Á, Videira RA, Valentão P, Veiga F, Andrade PB. In vitro multimodal-effect of Trichilia catigua A. Juss. (Meliaceae) bark aqueous extract in CNS targets. J Ethnopharmacol 2018; 211: 247-255
  • 362 Jäger AK, Gauguin B, Andersen J, Adsersen A, Gudiksen L. Screening of plants used in Danish folk medicine to treat depression and anxiety for affinity to the serotonin transporter and inhibition of MAO-A. J Ethnopharmacol 2013; 145: 822-825
  • 363 Khursheed R, Rizwani GH, Sultana V, Ahmed M, Kamil A. Antidepressant effect and categorization of inhibitory activity of monoamine oxidase type A and B of ethanolic extract of seeds of Trigonella foenum-graecum Linn. Pak J Pharm Sci 2014; 27: 1419-1425
  • 364 Wang J, Cheng C, Xin C, Wang Z. The antidepressant-like effect of flavonoids from Trigonella foenum-graecum seeds in chronic restraint stress mice via modulation of monoamine regulatory pathways. Molecules 2019; 24: 1105
  • 365 Hsu LC, Ko YJ, Cheng HY, Chang CW, Lin YC, Cheng YH, Hsieh MT, Peng WH. Antidepressant-like activity of the ethanolic extract from Uncaria lanosa Wallich var. appendiculata Ridsd in the forced swimming test and in the tail suspension test in mice. Evid Based Complement Alternat Med 2012; 2012: 497302
  • 366 Plushner SL. Valerian: Valeriana officinalis . Am J Health Syst Pharm 2000; 57: 328 333–335
  • 367 Hattesohl M, Feistel B, Sievers H, Lehnfeld R, Hegger M, Winterhoff H. Extracts of Valeriana officinalis L. s.l. show anxiolytic and antidepressant effects but neither sedative nor myorelaxant properties. Phytomedicine 2008; 15: 2-15
  • 368 Gonulalan EM, Bayazeid O, Yalcin FN, Demirezer LO. The roles of valerenic acid on BDNF expression in the SH-SY5Y cell. Saudi Pharm J 2018; 26: 960-964
  • 369 Liu XG, Gao PY, Wang GS, Song SJ, Li LZ, Li X, Yao XS, Zhang ZX. In vivo antidepressant activity of sesquiterpenes from the roots of Valeriana fauriei Briq. Fitoterapia 2012; 83: 599-603
  • 370 Choi JH, Lee MJ, Chang Y, Lee S, Kim HJ, Lee SW, Kim YO, Cho IH. Valeriana fauriei exerts antidepressant-like effects through anti-inflammatory and antioxidant activities by inhibiting brain-derived neurotrophic factor associated with chronic restraint stress. Rejuvenation Res 2020; 23: 245-255
  • 371 Müller LG, Salles LA, Stein AC, Betti AH, Sakamoto S, Cassel E, Vargas RF, von Poser GL, Rates SM. Antidepressant-like effect of Valeriana glechomifolia Meyer (Valerianaceae) in mice. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36: 101-109
  • 372 Müller LG, Stolz ED, Betti AH, Herzfeldt V, Rates SM. Synergistic interaction between diene valepotriates from Valeriana glechomifolia Meyer (Valerianaceae) and classical antidepressants: an isobolographic analysis. J Pharm Pharmacol 2015; 67: 1008-1016
  • 373 Müller LG, Biojone C, Sales AJ, Betti AH, Herzfeldt V, Joca SRL, Rates SMK. A valepotriate-enriched fraction from Valeriana glechomifolia decreases DNA methylation and up-regulate TrkB receptors in the hippocampus of mice. Behav Pharmacol 2020; 31: 333-342
  • 374 Sah SP, Mathela CS, Chopra K. Antidepressant effect of Valeriana wallichii patchouli alcohol chemotype in mice: Behavioural and biochemical evidence. J Ethnopharmacol 2011; 135: 197-200
  • 375 Dasari R, Sathyavathi D, Belide SK, Soumy BR. Pharmacological evaluation for antidepressant activity of Vanda spathulata in mice. Int J Pharm Bio Sci 2013; 4: 866-872
  • 376 Karim N, Khan I, Abdelhalim A, Khan A, Halim SA. Antidepressant potential of novel flavonoids derivatives from sweet violet (Viola odorata L): Pharmacological, biochemical and computational evidences for possible involvement of serotonergic mechanism. Fitoterapia 2018; 128: 148-161
  • 377 Bhattacharya SK, Bhattacharya A, Sairam K, Ghosal S. Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: an experimental study. Phytomedicine 2000; 7: 463-469
  • 378 Shah PC, Trivedi NA, Bhatt JD, Hemavathi KG. Effect of Withania somnifera on forced swimming test induced immobility in mice and its interaction with various drugs. Indian J Physiol Pharmacol 2006; 50: 409-415
  • 379 Gupta GL, Rana AC. Protective effect of Withania somnifera dunal root extract against protracted social isolation induced behavior in rats. Indian J Physiol Pharmacol 2007; 51: 345-353
  • 380 Attari M, Jamaloo F, Shadvar S, Fakhraei N, Dehpour AR. Effect of Withania somnifera Dunal root extract on behavioral despair model in mice: a possible role for nitric oxide. Acta Med Iran 2016; 54: 165-172
  • 381 Biney RP, Benneh CK, Ameyaw EO, Boakye-Gyasi E, Woode E. Xylopia aethiopica fruit extract exhibits antidepressant-like effect via interaction with serotonergic neurotransmission in mice. J Ethnopharmacol 2016; 184: 49-57
  • 382 Sharma PK, Singh V, Ali M, Kumar S. Effect of ethanolic extract of Zingiber officinale Roscoe on central nervous system activity in mice. Indian J Exp Biol 2016; 54: 664-669
  • 383 Martínez DM, Barcellos A, Casaril AM, Savegnago L, Lernardão EJ. Antidepressant-like activity of dehydrozingerone: involvement of the serotonergic and noradrenergic systems. Pharmacol Biochem Behav 2014; 127: 111-117
  • 384 Kukula-Koch W, Koch W, Czernicka L, Głowniak K, Asakawa Y, Umeyama A, Marzec Z, Kuzuhara T. MAO-A inhibitory potential of terpene constituents from ginger rhizomes–a bioactivity guided fractionation. Molecules 2018; 23: 1301
  • 385 Sharma VK, Chauhan NS, Lodhi S, Singhai AK. Anti-depressant activity of Zizyphus xylopyrus . Int J Phytomed 2009; 1: 12-17
  • 386 Alonso-Castro AJ, Zapata-Morales JR, Arana-Argáez V, Torres-Romero JC, Ramírez-Villanueva E, Pérez-Medina SE, Ramírez-Morales MA, Juárez-Méndez MA, Infante-Barrios YP, Martínez-Gutiérrez F, Carranza-Álvarez C, Isiordia-Espinoza MA, Flores-Santos A. J Pharmacological and toxicological study of a chemical-standardized ethanol extract of the branches and leaves from Eysenhardtia polystachya (Ortega) Sarg. (Fabaceae). Ethnopharmacol 2018; 224: 314-322
  • 387 Ishola IO, Olayemi SO, Yemitan OK, Umeh EA. Antidepressant and anxiolytic effects of the methanol root extract of Capparis thonningii: Involvement of monoaminergic, cholinergic and GABAergic systems. Drug Res (Stuttg) 2015; 65: 205-213
  • 388 Ishola IO, Chatterjee M, Tota S, Tadigopulla N, Adeyemi OO, Palit G, Shukla R. Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice. Pharmacol Biochem Behav 2012; 103: 322-331
  • 389 Wang Q, Dwivedi Y. Advances in novel molecular targets for antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104: 110041
  • 390 Polyakova M, Beyer F, Mueller K, Sander C, Witte V, Lampe L, Rodrigues F, Riedel-Heller S, Kratzsch J, Hoffmann KT, Villringer A, Schoenknecht P, Schroeter ML. Serum BDNF levels correlate with regional cortical thickness in minor depression: a pilot study. Sci Rep 2020; 10: 14524
  • 391 Liu B, Liu J, Wang M, Zhang Y, Li L. From serotonin to neuroplasticity: evolvement of theories for major depressive disorder. Front Cell Neurosci 2017; 11: 305
  • 392 Dale E, Bang-Andersen B, Sánchez C. Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem Pharmacol 2015; 95: 81-97
  • 393 McNally L, Bhagwagar Z, Hannestad J. Inflammation, glutamate, and glia in depression: a literature review. CNS Spectr 2008; 13: 501-510
  • 394 Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000; 47: 351-354
  • 395 Lin TY, Lu CW, Wang CC, Wang YC, Wang SJ. Curcumin inhibits glutamate release in nerve terminals from rat prefrontal cortex: possible relevance to its antidepressant mechanism. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 1785-1793
  • 396 Gao SF, Bao AM. Corticotropin-releasing hormone, glutamate, and γ-aminobutyric acid in depression. Neuroscientist 2011; 17: 124-144
  • 397 Luscher B, Shen Q, Sahir N. The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 2011; 16: 383-406
  • 398 Lee CH, Giuliani F. The role of inflammation in depression and fatigue. Front Immunol 2019; 10: 1-12
  • 399 Zanelati TV, Biojone C, Moreira FA, Guimarães FS, Joca SRL. Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors. Br J Pharmacol 2010; 159: 122-128
  • 400 Sales AJ, Crestani CC, Guimarães FS, Joca SRL. Antidepressant-like effect induced by cannabidiol is dependent on brain serotonin levels. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86: 255-261
  • 401 Sales AJ, Fogaça MV, Sartim AG, Pereira VS, Wegener G, Guimarães FS, Joca SRL. Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex. Mol Neurobiol 2019; 56: 1070-1081