RSS-Feed abonnieren
DOI: 10.1055/a-1339-3227
Late-Stage Transformation of Carboxylic Acids to N-Trifluoroethylimides with Trifluoromethyl Diazomethane
We thank the Outstanding Young Talents Funding of Jiangxi Province (20171BCB23039) for funding this research.
Abstract
We report the first systematic evaluation of the reaction of trifluoromethyl diazomethane (2,2,2-trifluorodiazoethane, CF3CHN2) with drug-like molecules. We found our previous copper-catalyzed transformation of carboxylic acids to the corresponding N-trifluoroethylimides with CF3CHN2 and acetonitrile is well-suited for the late-stage modification of drug and drug-like acids. A procedure that enables the use of solid nitriles and nitriles with high boiling points as viable substrates is also disclosed.
Key words
N-trifluoroethylimides - trifluoromethyl diazomethane - late-stage functionalization - fluoroalkyl - copper - trifluoromethyl - 2,2,2-trifluorodiazoethaneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1339-3227.
- Supporting Information
Publikationsverlauf
Eingereicht: 15. Oktober 2020
Angenommen nach Revision: 17. Dezember 2020
Accepted Manuscript online:
17. Dezember 2020
Artikel online veröffentlicht:
18. Januar 2021
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
- 2a Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2015; 54: 3216
- 2b Sladojevich F, Arlow SI, Tang P, Ritter T. J. Am. Chem. Soc. 2013; 135: 2470
- 2c Tang P, Furuya T, Ritter T. J. Am. Chem. Soc. 2010; 132: 12150
- 3 Xiao H, Liu Z, Shen H, Zhang B, Zhu L, Li C. Chem 2019; 5: 940
- 4a Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
- 4b O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 5 Lopchuk JM. Imide Natural Products . In Developments in Organic Chemistry - Imides, Chap. 7 . Luzzio FA. Elsevier; Amsterdam: 2019: 255-334
- 6a Mertens L, Koenigs RM. Org. Biomol. Chem. 2016; 14: 10547
- 6b Mykhailiuk PK. Chem. Rev. 2020; 120: 12718
- 7a Molander GA, Cavalcanti LN. Org. Lett. 2013; 15: 3166
- 7b Slobodyanyuk EY, Artamonov OS, Shishkin OV, Mykhailiuk PK. Eur. J. Org. Chem. 2014; 2487
- 7c Morandi B, Carreira EM. Angew. Chem. Int. Ed. 2010; 49: 938
- 7d Morandi B, Cheang J, Carreira EM. Org. Lett. 2011; 13: 3080
- 7e Morandi B, Mariampillai B, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 1101
- 7f Zhu CL, Yang LJ, Li S, Zheng Y, Ma JA. Org. Lett. 2015; 17: 3442
- 7g Chen Z, Zheng Y, Ma JA. Angew. Chem. Int. Ed. 2017; 56: 4569
- 7h Le Maux P, Juillard S, Simonneaux G. Synthesis 2006; 1701
- 7i Hock KJ, Mertens L, Metze FK, Schmittmann C, Koenigs RM. Green Chem. 2017; 19: 905
- 8a Morandi B, Carreira EM. Angew. Chem. Int. Ed. 2010; 49: 4294
- 8b Liu CB, Meng W, Li F, Wang S, Nie J, Ma JA. Angew. Chem. Int. Ed. 2012; 51: 6227
- 8c Britton J, Jamison TF. Angew. Chem. Int. Ed. 2017; 56: 8823
- 9 Zhang FG, Wei Y, Yi YP, Nie J, Ma JA. Org. Lett. 2014; 16: 3122
- 10 Luo HQ, Wu GJ, Zhang Y, Wang JB. Angew. Chem. Int. Ed. 2015; 54: 14503
- 11a Pieber B, Kappe CO. Org. Lett. 2016; 18: 1076
- 11b Morandi B, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 9085
- 12 Meese CO. Synthesis 1984; 1041
- 13a Argintaru OA, Ryu D, Aron I, Molander GA. Angew. Chem. Int. Ed. 2013; 52: 13656
- 13b Molander GA, Ryu D. Angew. Chem. Int. Ed. 2014; 53: 14181
- 14 Hyde S, Veliks J, Liegault B, Grassi D, Taillefer M, Gouverneur V. Angew. Chem. Int. Ed. 2016; 55: 3785
- 15 Arkhipov AV, Arkhipov VV, Cossy J, Kovtunenko VO, Mykhailiuk PK. Org. Lett. 2016; 18: 3406
- 16 Guo R, Zheng Y, Ma JA. Org. Lett. 2016; 18: 4170
- 17 Peng SQ, Zhang XW, Zhang L, Hu XG. Org. Lett. 2017; 19: 5689
- 18 Mykhailiuk PK, Kishko I, Kubyshkin V, Budisa N, Cossy J. Chem. Eur. J. 2017; 23: 13279
- 19a Koley D, Colon OC, Savinov SN. Org. Lett. 2009; 11: 4172
- 19b Li Y.-X, Li L.-H, Yang Y.-F, Hua H.-L, Yan X.-B, Zhao L.-B, Zhang J.-B, Ji F.-J, Liang Y.-M. Chem. Commun. 2014; 50: 9936
- 20 Mykhailiuk PK. Angew. Chem. Int. Ed. 2015; 54: 6558
-
21 More comments on the in situ generated CF3CHN2 (Method A/A′): Although the yields with 20 equiv of valeronitrile in Table 1, entries 5 and 6 are higher than those with a solvent quantity of valeronitrile, we found that other nitriles still need solvent quantities to get high yields. For example, when using 20 equiv of nitrile, low yields were obtained for the synthesis of 3d and 3m, with the NMR yield being 29% and 13%, respectively.
- 22 Mumm O. Ber. Dtsch. Chem. Ges. 1910; 43: 886
- 23 CF3CF2CHN2, as a close analogue of CF3CHN2, may be applicable using the current method: Mykhailiuk PK. Chem. Eur. J. 2014; 20: 4942