Rofo 2021; 193(09): 1019-1033
DOI: 10.1055/a-1348-2122
Review

Bildgebende Diagnostik der patellofemoralen Instabilität

Article in several languages: English | deutsch
Kai-Jonathan Maas
1   Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Malte Lennart Warncke
1   Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Miriam Leiderer
1   Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Matthias Krause
2   Department Trauma Surgery and Orthopedics, UKE, Hamburg, Germany
,
Tobias Dust
2   Department Trauma Surgery and Orthopedics, UKE, Hamburg, Germany
,
Jannik Frings
2   Department Trauma Surgery and Orthopedics, UKE, Hamburg, Germany
,
Karl-Heinz Frosch
2   Department Trauma Surgery and Orthopedics, UKE, Hamburg, Germany
,
Gerhard Adam
1   Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Frank Oliver Gerhard Henes
1   Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
› Author Affiliations

Zusammenfassung

Hintergrund Die patellofemorale Instabilität (PI) umschreibt ein erhöhtes Luxations- bzw. Reluxationsrisiko der Kniescheibe im Patellofemoralgelenk (PFG). In den meisten Fällen liegt ein adäquates Trauma mit Patellaluxation und Verletzung des Haltebandapparats oder das Vorliegen anatomischer Risikofaktoren vor, welche zu einem unphysiologischen Bewegungsablauf im Patellofemoralgelenk führen (Maltracking). Neben der Anamnese und der klinischen Untersuchung stellt die radiologische Bildgebung (Röntgen, Computertomografie und Magnetresonanztomografie) den zentralen Grundpfeiler bei der Diagnostik der PI dar, um das Vorliegen und den Ausprägungsgrad anatomischer Risikofaktoren zu evaluieren.

Methodik Im Rahmen dieser Übersichtsarbeit wird der aktuelle Stellenwert der bildgebenden Diagnostik und Therapieplanung der patellofemoralen Instabilität vorgestellt. Das Ziel dieser Arbeit besteht in der übersichtlichen Darstellung der wichtigsten anatomischen Risikofaktoren der PI sowie der Möglichkeiten der Bildgebung, diese zu detektieren und zu quantifizieren.

Ergebnisse und Schlussfolgerung Die PI basiert häufig auf einer multifaktoriellen Disposition. Bei den Risikofaktoren muss zwischen der Trochleadysplasie, strukturellen Defekten des medialen patellofemoralen Ligaments (MPFL), der Patella alta, einer erhöhten Tuberositas-Tibiae-Trochlea-Groove-Distanz (TT-TG), Torsionsdeformitäten sowie dem Genu valgum differenziert werden. Obwohl das konventionelle Röntgen häufig noch zur Basisdiagnostik der PI eingesetzt wird, ist die Schnittbilddiagnostik (MRT und CT) heutzutage die Methode der Wahl, um die PI und ihre zugrunde liegenden Risikofaktoren zu evaluieren.

Kernaussagen:

  • Die PI wird durch ein erhöhtes Luxations- bzw. Reluxationsrisiko der Patella im PFG charakterisiert.

  • Als wichtigste anatomische Risikofaktoren der PI gelten die Trochleadysplasie, ein erhöhter TT-TG-Abstand, die Patella alta sowie Torsionsdeformitäten und das Genu valgum.

  • Mithilfe der CT und MRT gelingen eine präzise Diagnostik der PI sowie eine genaue Charakterisierung und Quantifizierung der zugrunde liegenden Risikofaktoren.

  • Mit der Möglichkeit einer exakten Evaluation aller, häufig in Wechselwirkung miteinander stehenden Risikofaktoren nimmt die Schnittbildgebung bei der individuellen Therapieplanung eine zentrale Rolle ein.

Zitierweise

  • Maas KJ, Warncke ML, Leiderer M et al. Diagnostic Imaging of Patellofemoral Instability. Fortschr Röntgenstr 2021; 193: 1019 – 1033



Publication History

Received: 15 September 2020

Accepted: 02 December 2020

Article published online:
27 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Frosch KH, Schmeling A. A new classification system of patellar instability and patellar maltracking. Arch Orthop Trauma Surg 2016; 136: 485-497
  • 2 Vivod G, Verdonk P, Drobnič M. Long-term clinical and radiographic outcome of patello-femoral realignment procedures: a minimum of 15-year follow-up. Knee Surg Sports Traumatol Arthrosc 2013; 22: 2747-2755
  • 3 Atkin DM, Fithian DC, Marangi KS. et al Characteristics of Patients with Primary Acute Lateral Patellar Dislocation and Their Recovery within the First 6 Months of Injury. The American Journal of Sports Medicine 2017; 28: 472-479
  • 4 Cosgarea AJ, Browne JA, Kim TK. et al Evaluation and Management of the Unstable Patella. The Physician and Sportsmedicine 2015; 30: 33-40
  • 5 Sheehan FT, Derasari A, Fine KM. et al Q-angle and J-sign: Indicative of Maltracking Subgroups in Patellofemoral Pain. Clinical Orthopaedics and Related Research 2010; 468: 266-275
  • 6 Haj-Mirzaian A, Thawait GK, Tanaka MJ. et al Diagnosis and Characterization of Patellofemoral Instability: Review of Available Imaging Modalities. ingentaconnectcom 2017; 25: 64-71
  • 7 Purohit N, Hancock N, Saifuddin A. Surgical management of patellofemoral instability. I. Imaging considerations. Skeletal Radiology 2019; 48: 859-869
  • 8 Hautamaa PV, Fithian DC, Kaufman KR. et al Medial Soft Tissue Restraints in Lateral Patellar Instability and Repair. Clinical Orthopaedics and Related Research 1998; 349: 174
  • 9 Krebs C, Tranovich M, Andrews K. et al The medial patellofemoral ligament: Review of the literature. Journal of Orthopaedics 2018; 15: 596-599
  • 10 Nomura E, Inoue M, Osada N. Anatomical analysis of the medial patellofemoral ligament of the knee, especially the femoral attachment. Knee Surg Sports Traumatol Arthrosc 2005; 13: 510-515
  • 11 Panagiotopoulos E, Strzelczyk P, Herrmann M. et al Cadaveric study on static medial patellar stabilizers: the dynamizing role of the vastus medialis obliquus on medial patellofemoral ligament. Knee Surg Sports Traumatol Arthrosc 2006; 14: 7-12
  • 12 Desio SM, Burks RT, Bachus KN. Soft Tissue Restraints to Lateral Patellar Translation in the Human Knee. The American Journal of Sports Medicine 2016; 26: 59-65
  • 13 Caylor D, Fites R, Worrell TW. The Relationship between Quadriceps Angle and Anterior Knee Pain Syndrome1. J Orthop Sports Phys Ther 1993; 17: 11-16
  • 14 Post WR, Fithian DC. Patellofemoral Instability: A Consensus Statement From the AOSSM/PFF Patellofemoral Instability Workshop. Orthopaedic Journal of Sports Medicine 2018; 6: 232596711775035
  • 15 Diederichs G, Issever AS, Scheffler S. MR Imaging of Patellar Instability: Injury Patterns and Assessment of Risk Factors1. RadioGraphics 2010; 30: 961-981
  • 16 Sillanpää PJ, Mattila VM, Visuri T. et al Patellofemoral osteoarthritis in patients with operative treatment for patellar dislocation: a magnetic resonance-based analysis. Knee Surg Sports Traumatol Arthrosc 2011; 19: 230-235
  • 17 Dejour H, Walch G, Nove-Josserand L. et al Factors of patellar instability: An anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 1994; 2: 19-26
  • 18 Dejour H, Walch G, Neyret P. et al [Dysplasia of the femoral trochlea]. Rev Chir Orthop Reparatrice Appar Mot 1990; 76: 45-54
  • 19 Pfirrmann CW, Zanetti M, Romero J. et al Femoral trochlear dysplasia: MR findings. Radiology 2000; 216: 858-864
  • 20 Fucentese SF, von Roll A, Koch PP. et al The patella morphology in trochlear dysplasia – A comparative MRI study. The Knee 2006; 13: 145-150
  • 21 Elias DA, White LM, Fithian DC. Acute Lateral Patellar Dislocation at MR Imaging: Injury Patterns of Medial Patellar Soft-Tissue Restraints and Osteochondral Injuries of the Inferomedial Patella1. Radiology 2002; 225: 736-743
  • 22 Dejour H, Walch G, Nove-Josserand L. et al Factors of patellar instability: An anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 1994; 2: 19-26
  • 23 Insall J, Salvati E. Patella Position in the Normal Knee Joint1. Radiology 1971; 101: 101-104
  • 24 Noehren B, Duncan S, Lattermann C. Radiographic parameters associated with lateral patella degeneration in young patients. Knee Surg Sports Traumatol Arthrosc 2012; 20: 2385-2390
  • 25 Brady JM, Rosencrans AS, Stein BES. Use of TT-PCL versus TT-TG. Curr Rev Musculoskelet Med 2018; 11: 261-265
  • 26 Dejour D, Le Coultre B. Osteotomies in Patello-Femoral Instabilities. Sports Medicine and Arthroscopy Review 2018; 26: 8-15
  • 27 Frings J, Krause M, Akoto R. et al Combined distal femoral osteotomy (DFO) in genu valgum leads to reliable patellar stabilization and an improvement in knee function. Knee Surg Sports Traumatol Arthrosc 2018; 26: 3572-3581
  • 28 Cooke TD, Price N, Fisher B. et al The inwardly pointing knee. An unrecognized problem of external rotational malalignment. Clinical Orthopaedics and Related Research 1990; 260: 56-60
  • 29 Strecker W, Keppler P, Gebhard F. et al Length and torsion of the lower limb. J Bone Joint Surg Br 1997; 79: 1019-1023
  • 30 Frosch KH, Akoto R, Schmeling A. Patellaluxation bei Sportlern. Chirurg 2014; 85: 879-887
  • 31 Longo UG, Rizzello G, Ciuffreda M. et al Elmslie-Trillat, Maquet, Fulkerson, Roux Goldthwait, and Other Distal Realignment Procedures for the Management of Patellar Dislocation: Systematic Review and Quantitative Synthesis of the Literature. Arthroscopy 2016; 32: 929-943
  • 32 Frosch S, Balcarek P, Walde TA. et al [The treatment of patellar dislocation: a systematic review]. Z Orthop Unfall 2011; 149: 630-645
  • 33 Fucentese SF, Zingg PO, Schmitt J. et al Classification of trochlear dysplasia as predictor of clinical outcome after trochleoplasty. Knee Surg Sports Traumatol Arthrosc 2011; 19: 1655-1661
  • 34 Dejour D, Saggin P. The sulcus deepening trochleoplasty – the Lyon’s procedure. Int Orthop 2010; 34: 311-316
  • 35 Thienpont E, Schwab PE, Cornu O. et al Bone morphotypes of the varus and valgus knee. Arch Orthop Trauma Surg 2017; 137: 393-400
  • 36 Waidelich HA, Strecker W, Schneider E. Computertomographische Torsionswinkel- und Längenmessung an der unteren Extremität. In: Posttraumatische Beindeformitäten Berlin, Heidelberg: Springer; 1997: 22-29
  • 37 Diederichs G, Köhlitz T, Kornaropoulos E. et al Magnetic Resonance Imaging Analysis of Rotational Alignment in Patients With Patellar Dislocations. The American Journal of Sports Medicine 2012; 41: 51-57
  • 38 Nacey NC, Fox MG, Luce BN. et al Assessing Femoral Trochlear Morphologic Features on Cross-Sectional Imaging Before Trochleoplasty: Dejour Classification Versus Quantitative Measurement. American Journal of Roentgenology 2020; 215: 458-464
  • 39 Kim JH, Lee SK. Superolateral Hoffa Fat Pad Edema and Patellofemoral Maltracking: Systematic Review and Meta-Analysis. American Journal of Roentgenology 2020; 1-13
  • 40 Lippacher S, Dejour D, Elsharkawi M. et al Observer Agreement on the Dejour Trochlear Dysplasia Classification: A Comparison of True Lateral Radiographs and Axial Magnetic Resonance Images. The American Journal of Sports Medicine 2012; 40: 837-843
  • 41 Tscholl PM, Wanivenhaus F, Fucentese SF. Conventional Radiographs and Magnetic Resonance Imaging for the Analysis of Trochlear Dysplasia: The Influence of Selected Levels on Magnetic Resonance Imaging. The American Journal of Sports Medicine 2016; 45: 1059-1065
  • 42 Falkowski AL, Camathias C, Jacobson JA. et al Increased Magnetic Resonance Imaging Signal of the Lateral Patellar Facet Cartilage: A Functional Marker for Patellar Instability?. American Journal of Sports Medicine 2017; 1-8
  • 43 Kim CW, Hosseini A, Lin L. et al Quantitative analysis of T2 relaxation times of the patellofemoral joint cartilage 3 years after anterior cruciate ligament reconstruction. Journal of Orthopaedic Translation 2018; 1-8
  • 44 Thuillier DU, Souza RB, Wu S. et al T 1ρImaging Demonstrates Early Changes in the Lateral Patella in Patients With Patellofemoral Pain and Maltracking. The American Journal of Sports Medicine 2013; 41: 1813-1818
  • 45 Shellock FG, Mink JH, Fox JM. Patellofemoral joint: kinematic MR imaging to assess tracking abnormalities. Radiology 1988; 168: 551-553
  • 46 Elias JJ, Wilson DR, Adamson R. et al Evaluation of a computational model used to predict the patellofemoral contact pressure distribution. J Biomech 2004; 37: 295-302
  • 47 McNally EG, Ostlere SJ, Pal C. et al Assessment of patellar maltracking using combined static and dynamic MRI. European Radiology 2000; 10: 1051-1055
  • 48 Burke CJ, Kaplan D, Block T. et al Clinical Utility of Continuous Radial Magnetic Resonance Imaging Acquisition at 3 T in Real-time Patellofemoral Kinematic Assessment: A Feasibility Study. Arthroscopy: The Journal of Arthroscopic & Related Surgery 2018; 34: 726-733
  • 49 Best MJ, Tanaka MJ, Demehri S. et al Accuracy and Reliability of the Visual Assessment of Patellar Tracking. The American Journal of Sports Medicine 2020; 48: 370-375
  • 50 Carlson VR, Boden BP, Shen A. et al Patellar Maltracking Persists in Adolescent Females With Patellofemoral Pain: A Longitudinal Study. Orthopaedic Journal of Sports Medicine 2017; 5: 232596711668677
  • 51 Saggin PRF, Saggin JI, Dejour D. Imaging in Patellofemoral Instability: An Abnormality-based Approach. Sports Medicine and Arthroscopy Review 2012; 20: 145-151
  • 52 Frings J, Balcarek P, Aerzteblatt PTD. Conservative Versus Surgical Treatment for Primary Patellar Dislocation. researchgate.net 2020
  • 53 Balcarek P, Oberthür S, Hopfensitz S. et al. Which patellae are likely to redislocate?. Knee Surg Sports Traumatol Arthrosc 2014; 22: 2308-2314
  • 54 Messverfahren und Klassifikationen in der muskuloskelettalen RadiologieWaldt, Eiber, Wörtler. 212. Thieme Verlag; 2011. ISBN: 978-3-13-149721-5 423
  • 55 Maas KJ, Warncke M, Behzadi C. et al. Correlation of T2* relaxation times of the retropatellar cartilage with tibial tuberosity-trochlea groove distance in professional soccer players. Sci Rep 2020; 10: 15355
  • 56 Frings J, Dust T, Krause M. et al. Objective assessment of patellar maltracking with 3 T dynamic magnetic resonance imaging: feasibility of a robust and reliable measuring technique. Sci Rep 2020; 10: 1-13