Subscribe to RSS
DOI: 10.1055/a-1348-2873
Femoral Stem Fracture in Hip Revision Arthroplasty: A Systematic Literature Review of the Real-World Evidence
Bruch des femoralen Hüftschafts in der Hüftrevisionsendoprothetik – das sagt uns die Literatur zur „Real-World Evidence“Abstract
Background Total hip arthroplasty (THA) presents as an excellent treatment for the osteoarthritic hip, demonstrating good survival rates. However, aseptic loosening and infection are the main causes of operative revision. The methods used in revision surgery are non-modular or modular THA implants. In addition to the abovementioned revision reasons for THA, this treatment could be associated with the possibility of femoral stem fracture, especially in the modular system. The topic of material failure has been focused on in the public media. The question arises as to how such media reports correlate with the published literature. The observed mentioned number of cases concerning a femoral stem fracture vary between one single case and up to 18.5% within a clinical study, thus presenting an inhomogeneous data situation with a large span. The specific aim of this systematic review is to establish facts and clarify the number of unforeseen events of a femoral stem fracture based on peer review articles and registry data. This clarification is important to us, as these media reports have led to uncertainty among patients.
Methods A systematic review was performed in accordance with the PRISMA statement. Peer review articles in English and German, presenting original articles, meta-analyses, or case reports, were searched from the turn of the millennium up to December 2019. Only articles that reported a femoral stem component fracture, with content of clinical data as well as register data, were included. Relevant papers published after the defined research time frame were taken into account within the discussion.
Results In total, 218 fractures of a femoral stem (141 primary and 77 revision THA) component could be identified within the selected literature. Most cases of a femoral stem fracture occurred in the modular THA implants compared to the non-modular stems. Regarding revision THA, in summary, 77 implants, presenting 23 non-modular and 54 modular implants, failed by means of femoral stem fracture. A review of 11 National Joint Registries shows a revision rate between 0.04 and 0.05% in only 2 registers according to the specific subject of a femoral stem fracture. For the remaining 9 registers, however, detailed information is lacking and only nonspecific information such as a generic “implant failure” or “other reason” (which can cover a multitude of causes) is supplied.
Conclusion A femoral stem fracture presents a devastating complication for the patient, the surgeon as well as for the manufacturer of the implant. Modular THA implants play an increasingly valuable role concerning restoration of individual anatomy in modern THA revision surgery, especially within complex cases. Regarding revision procedures, data suggests a lower risk of femoral stem fracture for modular implants compared to primary procedures, while the risk of fracture for non-modular implants seems to increase during revision. Ultimately, it cannot be proven whether this is actually applicable, since the absolute number of implanted prosthesis systems is not known. Various implant-, patient-, and surgeon-related factors may lead to these reported femoral stem fractures. However, this systematic review suggests that this is, in general, a rare complication.
Zusammenfassung
Einleitung Die Hüftendoprothetik stellt eine ausgezeichnete Behandlungsoption der Hüftgelenksarthrose dar und weist gute Langzeitüberlebensraten der Implantate auf. Aseptische Lockerungen und Infektionen sind die Hauptursachen für eine Revision des primären Hüftgelenkersatzes. Die in der Revisionschirurgie verwendeten Implantatkonzepte sind als nicht modulare oder modulares Hüftendoprothesensystem verfügbar. Neben den genannten Revisionsgründen wird in der modularen Revisionsendoprothetik vereinzelt über gebrochene, femorale Schaftkomponenten berichtet. Das Thema des Materialversagens in der Endoprothetik ist in Fokus der Medien gerückt. Es stellt sich die Frage, wie solche Medienberichte mit der veröffentlichten Literatur korreliert. Die genannten Fallzahlen femoraler Schaftbrüche variieren von Einzelfällen bis zu 18,5% in klinischen Studien. Ziel der Arbeit ist es, Daten aus der Literatur und Registern zu sammeln, um eine möglichst realitätsnahe Frakturrate für die femorale Schaftkomponente zu ermitteln. Die Klärung der Sachlage ist wichtig, da derartige Medienberichte zur Verunsicherung der Patienten führen.
Material und Methode Gemäß den PRISMA-Richtlinien wurde eine systematische Literaturrecherche durchgeführt. Peer-Review-Artikel in englischer und deutscher Sprache wurden im Zeitraum Januar 2000 bis Dezember 2019 recherchiert. Neben Registerdaten wurden nur wissenschaftliche Artikel mit klinischen Daten, die unterschiedliche femorale Schaftbrüche abhandelten, eingeschlossen. Relevante Beiträge, die nach dem definierten Recherchezeitraum veröffentlicht wurden, sind in der Diskussion dieser Arbeit berücksichtigt.
Ergebnisse Insgesamt konnten 218 Frakturen femoralen Schaftkomponenten (141 primäre und 77 Revisionsendoprothesensysteme) gezählt werden. Die meisten Schaftbrüche traten bei modularen Systemen auf. Bei den 77 Revisionsendoprothesensystemen brachen anteilig 23 nicht-modulare und 54 unterschiedliche modulare Implantate. Die Durchsicht von insgesamt 11 Endoprothesenregistern ergab, dass in nur 2 Registern die Revisionsrate aufgrund femoralen Schaftbrüche beschrieben wurde, die zwischen 0,04% und 0,05% lag. Bei den verbleibenden 9 Registern fehlen detaillierte Angaben. Hier werden nur unspezifische Informationen angegeben, wie z. B. ein allgemeines „Implantatversagen“ (das eine Vielzahl von Implantatkomponenten umfassen kann) oder solche Ereignisse werden unspezifizierend unter der Kategorie „anderer Revisionsgrund“ subsummiert.
Diskussion Der femorale Schaftbruch stellt für den Patienten, den Chirurgen und den Implantathersteller eine gravierende Komplikation dar. Modulare Systeme spielen in der modernen Hüftrevisionschirurgie, insbesondere in komplexen Situationen, eine immer wertvollere Rolle. Die modulare Revisions-Hüftendoprothetik scheint ausweislich der vorgelegten Analyse ein geringeres Risiko für einen femoralen Schaftbruch im Vergleich zu modularen Systemen in der Primärversorgung aufzuweisen, während das Frakturrisiko beim nicht modularen Implantat in der Revisionsendoprothetik einen erhöhten Absolutwert zeigte. Ob dies tatsächlich zutreffend ist, kann letztendlich nicht belegt werden, da die absoluten Zahlen der implantierten Prothesensysteme nicht bekannt sind. Unterschiedlichste implantat-, patienten- und chirurgisch-assoziierte Faktoren können zum femoralen Schaftbruchs führen. Die Daten dieser systematischen Literaturrecherche zeigen jedoch, dass der femoralen Schaftbruch eine eher selten auftretende Komplikation ist.
Key words
femoral stem - stem fracture - systematic review - total hip arthroplasty - revision hip arthroplastySchlüsselwörter
femorale Schaft - Schaftbruch - systematisches Review - Hüftendoprothetik - HüftrevisionPublication History
Article published online:
13 April 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Karachalios T, Komnos G, Koutalos A. Total hip arthroplasty: Survival and modes of failure. EFORT Open Rev 2018; 3: 232-239 doi:10.1302/2058-5241.3.170068
- 2 Pivec R, Johnson AJ, Mears SC. et al. Hip arthroplasty. The Lancet 2012; 380: 1768-1777 doi:10.1016/s0140-6736(12)60607-2
- 3 Kärrholm J, Mohaddes M, Odin D. et al. Swedish Hip Arthroplasty Register – Annual Report 2017. 2018 Accessed March 12, 2019 at: https://registercentrum.blob.core.windows.net/shpr/r/Eng_Arsrapport_2017_Hoftprotes_final-Syx2fJPhMN.pdf
- 4 Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. The Lancet 2007; 370: 1508-1519 doi:10.1016/s0140-6736(07)60457-7
- 5 Bozic KJ, Kamath AF, Ong K. et al. Comparative Epidemiology of Revision Arthroplasty: Failed THA Poses Greater Clinical and Economic Burdens Than Failed TKA. Clin Orthop Relat Res 2015; 473: 2131-2138 doi:10.1007/s11999-014-4078-8
- 6 Schuh A, Werber S, Holzwarth U. et al. Cementless modular hip revision arthroplasty using the MRP Titan Revision Stem: outcome of 79 hips after an average of 4 yearsʼ follow-up. Arch Orthop Trauma Surg 2004; 124: 306-309 doi:10.1007/s00402-004-0656-7
- 7 Thümler P, Forst R, Zeiler G. Modulare Revisionsendoprothetik des Hüftgelenks. Heidelberg: Springer; 2005
- 8 Wirtz DC, Gravius S, Ascherl R. et al. Uncemented femoral revision arthroplasty using a modular tapered, fluted titanium stem: 5- to 16-year results of 163 cases. Acta Orthop 2014; 85: 562-569 doi:10.3109/17453674.2014.958809
- 9 Fink B, Urbansky K, Schuster P. Mid term results with the curved modular tapered, fluted titanium Revitan stem in revision hip replacement. Bone Joint J 2014; 96-B: 889-895 doi:10.1302/0301-620X.96B7.33280
- 10 Konan S, Garbuz DS, Masri BA. et al. Modular tapered titanium stems in revision arthroplasty of the hip: The Risk and Causes of Stem Fracture. Bone Joint J 2016; 98-B: 50-53 doi:10.1302/0301-620X.98B1.36442
- 11 Lakstein D, Backstein D, Safir O. et al. Revision total hip arthroplasty with a porous-coated modular stem: 5 to 10 years follow-up. Clin Orthop Relat Res 2010; 468: 1310-1315 doi:10.1007/s11999-009-0937-0
- 12 Australian Orthopaedic Association National Joint Replacement Registry (AOAJR). 2019 Annual Report – Hip, Knee & Shoulder Arthroplasty. 2019 Accessed September 16, 2019 at: https://aoanjrr.sahmri.com/documents/10180/668596/Hip,+Knee+&+Shoulder+Arthroplasty/c287d2a3-22df-a3bb-37a2-91e6c00bfcf0
- 13 Grupp TM, Weik T, Bloemer W. et al. Modular titanium alloy neck adapter failures in hip replacement–failure mode analysis and influence of implant material. BMC Musculoskelet Disord 2010; 11: 3 doi:10.1186/1471-2474-11-3
- 14 Krull A, Morlock MM, Bishop NE. Factors influencing taper failure of modular revision hip stems. Med Eng Phys 2018; 54: 65-73 doi:10.1016/j.medengphy.2018.02.001
- 15 Bicanic G, Crnogaca K, Delimar D. A simple new technique for the removal of fractured femoral stems: a case report. J Med Case Rep 2014; 8: 151 doi:10.1186/1752-1947-8-151
- 16 Fink B. What can the surgeon do to reduce the risk of junction breakage in modular revision stems?. Arthroplast Today 2018; 4: 306-309 doi:10.1016/j.artd.2018.03.002
- 17 Van Houwelingen AP, Duncan CP, Masri BA. et al. High survival of modular tapered stems for proximal femoral bone defects at 5 to 10 years followup. Clin Orthop Relat Res 2013; 471: 454-462 doi:10.1007/s11999-012-2552-8
- 18 Rueckl K, Sculco PK, Berliner J. et al. Fracture risk of tapered modular revision stems: a failure analysis. Arthroplast Today 2018; 4: 300-305 doi:10.1016/j.artd.2017.11.002
- 19 Krüger DR, Guenther KP, Deml MC. et al. Mechanical failure of 113 uncemented modular revision femoral components. Bone Joint J 2020; 102: 573-579 doi:10.1302/0301-620X.102B5
- 20 Mertl P, Dehl M. Femoral stem modularity. Orthop Traumatol Surg Res 2020; 106: S35-S42 doi:10.1016/j.otsr.2019.05.019
- 21 Regional Register of Orthopaedic Prosthetic Implantology (R.I.P.O.). Overall Data Hip, Knee and Shoulder Arthroplasty in Emilia-Romagna Region (Italy) 2000–2017. 2019 Accessed August 8, 2019 at: http://ripo.cineca.it/authzssl/pdf/report_eng_2017.pdf
- 22 Heck DA, Partridge CM, Reuben JD. et al. Prosthetic component failures in hip arthroplasty surgery. J Arthroplasty 1995; 10: 575-580 doi:10.1016/s0883-5403(05)80199-8
- 23 Malchau H, Bragdon CR, Muratoglu OK. The stepwise introduction of innovation into orthopedic surgery: the next level of dilemmas. J Arthroplasty 2011; 26: 825-831 doi:10.1016/j.arth.2010.08.007
- 24 Liberati A, Altman DG, Tetzlaff J. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009; 6: e1000100 doi:10.1371/journal.pmed.1000100
- 25 Merini A, Viste A, Desmarchelier R. et al. Cementless Corail femoral stems with laser neck etching: Long-term survival, rupture rate and risk factors in 295 stems. Orthop Traumatol Surg Res 2016; 102: 71-76 doi:10.1016/j.otsr.2015.10.009
- 26 Benoist J, Lambotte JC, Polard JL. et al. High rate of fracture in the cementless modular Extreme (Mark I) femoral prosthesis in revision total hip arthroplasty: 33 cases at more than 5 yearsʼ follow-up. Orthop Traumatol Surg Res 2013; 99: 915-921 doi:10.1016/j.otsr.2013.08.007
- 27 Lakstein D, Eliaz N, Levi O. et al. Fracture of cementless femoral stems at the mid-stem junction in modular revision hip arthroplasty systems. J Bone Joint Surg Am 2011; 93: 57-65 doi:10.2106/JBJS.I.01589
- 28 Pour AE, Borden R, Murayama T. et al. High Risk of Failure With Bimodular Femoral Components in THA. Clin Orthop Relat Res 2016; 474: 146-153 doi:10.1007/s11999-015-4542-0
- 29 Kovac S, Mavcic B, Kotnik M. et al. What Factors Are Associated With Neck Fracture in One Commonly Used Bimodular THA Design? A Multicenter, Nationwide Study in Slovenia. Clin Orthop Relat Res 2019; 477: 1324-1332 doi:10.1097/CORR.0000000000000646
- 30 Richards CJ, Duncan CP, Masri BA. et al. Femoral revision hip arthroplasty: a comparison of two stem designs. Clin Orthop Relat Res 2010; 468: 491-496 doi:10.1007/s11999-009-1145-7
- 31 Yoshimoto K, Nakashima Y, Nakamura A. et al. Neck fracture of femoral stems with a sharp slot at the neck: biomechanical analysis. J Orthop Sci 2015; 20: 881-887 doi:10.1007/s00776-015-0745-1
- 32 Zajc J, Predan J, Gubeljak N. et al. Modular femoral neck failure after revision of a total hip arthroplasty: a finite element analysis. Eur J Orthop Surg Traumatol 2019; 29: 717-723 doi:10.1007/s00590-018-2314-8
- 33 Jang B, Kanawati A, Brazil D. et al. Laser etching causing fatigue fracture at the neck-shoulder junction of an uncemented femoral stem: A case report. J Orthop 2013; 10: 95-98 doi:10.1016/j.jor.2013.04.007
- 34 Peterson JR, Wright TM, Wellman SS. et al. Fracture of the neck of an uncemented femoral component unrelated to trunnion corrosion. Arthroplast Today 2019; 5: 52-56 doi:10.1016/j.artd.2019.01.006
- 35 Raj D, Coupe BD, Keene GS. Stem fracture of a collarless, polished, double-taper cemented femoral prosthesis: a case report. Acta Orthop Belg 2008; 74: 697-699
- 36 Dangles CJ, Altstetter CJ. Failure of the modular neck in a total hip arthroplasty. J Arthroplasty 2010; 25: 1169.e5-1169.e7 doi:10.1016/j.arth.2009.07.015
- 37 Mehran N, North T, Laker M. Failure of a modular hip implant at the stem-sleeve interface. Orthopedics 2013; 36: e978-981 doi:10.3928/01477447-20130624-33
- 38 Paliwal M, Gordon Allan D, Filip P. Failure analysis of three uncemented titanium-alloy modular total hip stems. Eng Fail Anal 2010; 17: 1230-1238 doi:10.1016/j.engfailanal.2010.02.011
- 39 Skendzel JG, Blaha JD, Urquhart AG. Total hip arthroplasty modular neck failure. J Arthroplasty 2011; 26: 338.e1-e4 doi:10.1016/j.arth.2010.03.011
- 40 Waly F, Abduljabbar FH, Gascoyne T. et al. Stem-Sleeve Junction Failure of a Modular Femoral Hip System: a Retrieval Analysis. HSS J 2015; 11: 285-290 doi:10.1007/s11420-015-9455-7
- 41 Harvie P, Haroon M, Henderson N. et al. Fracture of the hydroxyapatite-ceramic-coated JRI-Furlong femoral component: body mass index and implications for selection of the implant. J Bone Joint Surg Br 2007; 89: 742-745 doi:10.1302/0301-620X.89B6.18680
- 42 Herold F, Eijer H. Fracture of a Femoral Revision Stem following a Technical Failure. Case Rep Orthop 2018; 2018: 9691627 doi:10.1155/2018/9691627
- 43 Huber G, Weik T, Morlock MM. [Damage to a hip endoprosthesis caused by high-frequency electrocautery]. Orthopade 2009; 38: 622-625 doi:10.1007/s00132-009-1442-6
- 44 Konrads C, Wente MN, Plitz W. et al. [Damage to implants due to high-frequency electrocautery: analysis of four fractured hip endoprostheses shafts]. Orthopade 2014; 43: 1106-1110 doi:10.1007/s00132-014-3023-6
- 45 Sonntag R, Gibmeier J, Pulvermacher S. et al. Electrocautery Damage Can Reduce Implant Fatigue Strength: Cases and in Vitro Investigation. J Bone Joint Surg Am 2019; 101: 868-878 doi:10.2106/JBJS.18.00259
- 46 Cameron H, McTighe T. Experience with Modular Necks for Cemented Total Hip Arthroplasty. ReconRev 2016; 6: 31-36 doi:10.15438/rr.6.1.132
- 47 Fokter SK, Molicnik A, Kavalar R. et al. Why do some titanium-alloy total hip arthroplasty modular necks fail?. J Mech Behav Biomed Mater 2017; 69: 107-114 doi:10.1016/j.jmbbm.2016.12.012
- 48 Parisi T, Burroughs B, Kwon YM. Modular hip implant fracture at the stem-sleeve interface. Orthopedics 2015; 38: e234-e239 doi:10.3928/01477447-20150305-91
- 49 Ryniewicz AM, Bojko Ł, Ryniewicz A. et al. Identification of the cause of the stem neck fracture in the hip joint endoprosthesis. Int J Appl Mech Eng 2018; 23: 223-234 doi:10.1515/ijame-2018-0013
- 50 Schuh A, Kachler W, Sesselmann S. et al. Fracture of the cone of a morse taper junction in revision arthroplasty of the hip. Glob Med Therap 2018; 1: 2-4 doi:10.15761/gmt.1000107
- 51 Wang Q, Parry M, Masri BA. et al. Failure mechanisms in CoCrMo modular femoral stems for revision total hip arthroplasty. J Biomed Mater Res B Appl Biomater 2017; 105: 1525-1535 doi:10.1002/jbm.b.33693
- 52 Wodecki P, Sabbah D, Kermarrec G. et al. New type of hip arthroplasty failure related to modular femoral components: breakage at the neck-stem junction. Orthop Traumatol Surg Res 2013; 99: 741-744 doi:10.1016/j.otsr.2013.02.010
- 53 Wilson DA, Dunbar MJ, Amirault JD. et al. Early failure of a modular femoral neck total hip arthroplasty component: a case report. J Bone Joint Surg Am 2010; 92: 1514-1517 doi:10.2106/JBJS.I.01107
- 54 Atwood SA, Patten EW, Bozic KJ. et al. Corrosion-induced fracture of a double-modular hip prosthesis: a case report. J Bone Joint Surg Am 2010; 92: 1522-1525 doi:10.2106/JBJS.I.00980
- 55 Patel A, Bliss J, Calfee RP. et al. Modular femoral stem-sleeve junction failure after primary total hip arthroplasty. J Arthroplasty 2009; 24: 1143.e1-1143.e5 doi:10.1016/j.arth.2008.09.006
- 56 Hernandez A, Gargallo-Margarit A, Barro V. et al. Fracture of the Modular Neck in Total Hip Arthroplasty. Case Rep Orthop 2015; 2015: 591509 doi:10.1155/2015/591509
- 57 Lichtinger TK, Lahner M, von Engelhardt LV. et al. Früher Ermüdungsbruch am Prothesenhals einer konventionellen zementfreien Hüftendoprothese. OUP 2015; 4: 197-199 doi:10.3238/oup.2015.0197-0199
- 58 Zhu L, He R. Non-contemporaneous bilateral stem fractures occurring after staged bilateral hip revision using extensively porous-coated cylindrical femoral stems: a case report. BMC Musculoskelet Disord 2019; 20: 112 doi:10.1186/s12891-019-2489-0
- 59 Uchiyama K, Yamamoto T, Moriya M. et al. Early fracture of the modular neck of a MODULUS femoral stem. Arthroplast Today 2017; 3: 93-98 doi:10.1016/j.artd.2016.09.004
- 60 Busch CA, Charles MN, Haydon CM. et al. Fractures of distally-fixed femoral stems after revision arthroplasty. J Bone Joint Surg Br 2005; 87: 1333-1336 doi:10.1302/0301-620X.87B10.16528
- 61 Buttaro MA, Mayor MB, Van Citters D. et al. Fatigue fracture of a proximally modular, distally tapered fluted implant with diaphyseal fixation. J Arthroplasty 2007; 22: 780-783 doi:10.1016/j.arth.2006.07.007
- 62 Klauser W, Bangert Y, Lubinus P. et al. Medium-term follow-up of a modular tapered noncemented titanium stem in revision total hip arthroplasty: a single-surgeon experience. J Arthroplasty 2013; 28: 84-89 doi:10.1016/j.arth.2012.07.001
- 63 Silverton CD, Jacobs JJ, Devitt JW. et al. Midterm results of a femoral stem with a modular neck design: clinical outcomes and metal ion analysis. J Arthroplasty 2014; 29: 1768-1773 doi:10.1016/j.arth.2014.04.039
- 64 Riesgo AM, Hochfelder JP, Adler EM. et al. Survivorship and Complications of Revision Total Hip Arthroplasty with a Mid-Modular Femoral Stem. J Arthroplasty 2015; 30: 2260-2263 doi:10.1016/j.arth.2015.06.037
- 65 Mimura T. A Case Report of Implant Fracture of Extensively Porous-Coated, Distally Fixated Cementless Long Stem: Detailed Course of Stem Bending Development. Case Rep Orthop 2015; 2015: 895214 doi:10.1155/2015/895214
- 66 Ceretti M, Falez F. Modular titanium alloy neck failure in total hip replacement: analysis of a relapse case. SICOT J 2016; 2: 20 doi:10.1051/sicotj/2016009
- 67 Koch CN, Mateo LS, Kayiaros S. et al. Spontaneous Fractures of a Modern Modular Uncemented Femoral Stem. HSS J 2016; 12: 250-254 doi:10.1007/s11420-016-9510-z
- 68 Menciere ML, Amouyel T, Taviaux J. et al. Fracture of the cobalt-chromium modular femoral neck component in total hip arthroplasty. Orthop Traumatol Surg Res 2014; 100: 565-568 doi:10.1016/j.otsr.2014.03.027
- 69 Nasr PJ, Keene GS. Revision of a fractured uncemented revision stem using a custom designed punch and retrograde through-knee approach. Case Rep Orthop 2015; 2015: 485729 doi:10.1155/2015/485729
- 70 Norman P, Iyengar S, Svensson I. et al. Fatigue fracture in dual modular revision total hip arthroplasty stems: failure analysis and computed tomography diagnostics in two cases. J Arthroplasty 2014; 29: 850-855 doi:10.1016/j.arth.2013.09.008
- 71 Efe T, Schmitt J. Analyses of prosthesis stem failures in noncemented modular hip revision prostheses. J Arthroplasty 2011; 26: 665.e7-665.e12 doi:10.1016/j.arth.2010.05.020
- 72 Ellman MB, Levine BR. Fracture of the modular femoral neck component in total hip arthroplasty. J Arthroplasty 2013; 28: 196.e1-196.e5 doi:10.1016/j.arth.2011.05.024
- 73 Pearce S, Jenabzadeh AR, Walter WL. et al. Spontaneous fracture of diaphyseal stem of S-ROM femoral prosthesis. BMJ Case Rep 2014; 2014: bcr-2013 -202813 doi:10.1136/bcr-2013-202813
- 74 Wright G, Sporer S, Urban R. et al. Fracture of a modular femoral neck after total hip arthroplasty: a case report. J Bone Joint Surg Am 2010; 92: 1518-1521 doi:10.2106/JBJS.I.01033
- 75 Frank RM, Biswas D, Levine BR. Fracture of a dual-modular femoral component at the stem–sleeve junction in a metal-on-metal total hip arthroplasty. Am J Orthop 2014; 43: E57-E60
- 76 de Thomasson E, Conso C, Mazel C. A well-fixed femoral stem facing a failed acetabular component: to exchange or not? A 5- to 15-year follow-up study. Orthop Traumatol Surg Res 2012; 98: 24-29 doi:10.1016/j.otsr.2011.08.014
- 77 Trieb K, Stadler N. A New Case of Fracture of a Modular Femoral Neck Device After a Total Hip Arthroplasty. Open Orthop J 2015; 9: 126-128
- 78 Grimberg A, Jansson V, Liebs T. et al. Endoprothesenregister Deutschland (EPRD) – Jahresbericht 2017. 2018 Accessed November 1, 2019 at: https://www.eprd.de/fileadmin/user_upload/Dateien/Publikationen/Berichte/EPRD-Jahresbericht_2017_Einzelseiten_Online-Version.pdf
- 79 National Joint Registry for England, Wales, Northern Ireland and the Isle of Man (NJR). 16th Annual Report 2019. Accessed March 4, 2020 at: https://reports.njrcentre.org.uk/Portals/0/PDFdownloads/NJR 16th Annual Report 2019.pdf
- 80 Furnes O, Gjertsen JE, Hallan G. et al. Norwegian Arthroplasty Register – Annual Report. 2019 Accessed April 10, 2020 at: http://nrlweb.ihelse.net/eng/Rapporter/Report2019_english.pdf
- 81 Danish Hip Arthroplasty Register (DHR). Annual Report 2019 . Accessed March 4, 2020 at: http://danskhoftealloplastikregister.dk/wp-content/uploads/2019/09/DHR-årsrapport-2019_til-offentliggørelse-1.pdf
- 82 Michigan Arthroplasty Registry Collaborative Quality Initiative (MARCQI). 2019 Michigan Arthroplasty Registry Collaborative Quality Initiative (MARCQI) Annual Report. 2019 Accessed April 20, 2020 at: http://marcqi.org/dev/wp-content/uploads/2020/02/2019_AnnualReport_2-15-2020.pdf
- 83 Canadian Joint Replacement Registry (CJRR). Hip and Knee Replacements in Canada, 2017–2018: Annual Report. 2019 Accessed April 6, 2020 at: https://secure.cihi.ca/free_products/cjrr-annual-report-2019-en-web.pdf
- 84 New Zealand Joint Registry (NZJR). Twenty Year Report – January 1999 To December 2018. 2019 Accessed March 24, 2020 at: https://nzoa.org.nz/sites/default/files/DH8328_NZJR_2019_Report_v4_7Nov19.pdf
- 85 Dutch Arthroplasty Register (LROI). Online LROI Annual Report 2019. 2019 Accessed April 6, 2020 at: https://www.lroi-report.nl/app/uploads/2020/10/PDF-Online-LROI-annual-report-2019-min.pdf
- 86 American Joint Replacement Registry (AJRR). Annual Report 2018. 2018 Accessed January 28, 2020 at: http://connect.ajrr.net/2018-annual-report-download
- 87 Varnum C, Pedersen AB, Rolfson O. et al. Impact of hip arthroplasty registers on orthopaedic practice and perspectives for the future. EFORT Open Rev 2019; 4: 368-376 doi:10.1302/2058-5241.4.180091
- 88 OECD, OfECaD. Health Care Utilisation: Surgical procedures. 2019 Accessed October 9, 2019 at: https://stats.oecd.org/index.aspx?queryid=30167
- 89 ICAO. State of Global Aviation Safety – ICAO Safety Report 2019 Edition. Accessed March 20, 2020 at: https://www.icao.int/safety/Documents/ICAO_SR_2019_29082019.pdf