Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(13): 2286-2292
DOI: 10.1055/a-1375-3538
DOI: 10.1055/a-1375-3538
paper
Synthesis of Difluoromethyl-Substituted Quinazolines through Selective Difluoromethylation
Financial support from National Natural Science Foundation of China (nos: 21502188, 21362014, 21762020), Jiangxi Provincial Department of Science and Technology (no. 20171BAB203006), and Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (no. KLFS-KF-201702) is gratefully acknowledged.
Abstract
A highly selective difluoromethylation of quinazolines has been achieved by using commercially available ethyl bromodifluoroacetate as difluorocarbene precursor, providing the corresponding difluoromethyl substituted quinazoline derivatives with up to 83% yield.
Key words
difluoromethylation - quinazoline - ethyl bromodifluoroacetate - difluoromethyl substituted quinazoline - difluorocarbeneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1375-3538.
- Supporting Information
Publication History
Received: 26 December 2020
Accepted after revision: 27 January 2021
Accepted Manuscript online:
27 January 2021
Article published online:
22 February 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley-Blackwell; Chichester: 2009
- 1b Kirsch P. Modern Fluoroorganic Chemistry: Synthesis Reactivity, Application. Wiley-VCH; Weinheim: 2013
- 1c Buer BC, Chugh J, Al-Hashimi HM, Marsh EN. G. Biochemistry 2010; 49: 5760
- 1d Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
- 1e Liu Q, Ni C, Hu J. Natl. Sci. Rev. 2017; 4: 303
- 1f Chen M.-W, Yang Q, Deng ZH, Ding QP, Peng YY. J. Org. Chem. 2019; 84: 10371
- 2a Zafrani Y, Yeffet D, Sod-Moriah G, Berliner A, Amir D, Marciano D, Gershonov E, Saphier S. J. Med. Chem. 2017; 60: 797
- 2b Sessler CD, Rahm M, Becker S, Goldberg JM, Wang F, Lippard SJ. J. Am. Chem. Soc. 2017; 139: 9325
- 3a Sorbera LA, Leeson PA, Castaner J. Drugs Future 2000; 25: 1261
- 3b Gomila I, Barceló B, Rosell A, Avella S, Sahuquillo L, Dastis M. J. Anal. Toxicol. 2017; 41: 760
- 4 Brahms DL. S, Dailey WP. Chem. Rev. 1996; 96: 1585
- 5 Nawrot E, Jonczyk A. J. Fluorine Chem. 2006; 127: 943
- 6 Thomoson CS, Dolbier WR. J. Org. Chem. 2013; 78: 8904
- 7a Hu J. J. Fluorine Chem. 2009; 130: 1130
- 7b Zheng J, Li Y, Hu J, Meuzelaar GJ, Federsel H.-J. Chem. Commun. 2007; 5149
- 8 Zhang L, Zheng J, Hu J. J. Org. Chem. 2006; 71: 9845
- 9a Ando M, Wada T, Sato N. Org. Lett. 2006; 8: 3805
- 9b Mehta VP, Greaney MF. Org. Lett. 2013; 15: 5036
- 10 Chen QY, Wu SW. J. Fluorine Chem. 1989; 44: 433
- 11 Zafrani Y, Sod-Moriah G, Segall Y. Tetrahedron 2009; 65: 5278
- 12a Xie Q, Ni C, Zhang R, Li L, Rong J, Hu J. Angew. Chem. Int. Ed. 2017; 56: 3206
- 12b Hu M, Ni C, Li L, Han Y, Hu J. J. Am. Chem. Soc. 2015; 137: 14496
- 13 Fier PS, Hartwig JF. Angew. Chem. Int. Ed. 2013; 52: 2092
- 14 Shen X, Zhou M, Ni C, Zhang W, Hu J. Chem. Sci. 2014; 5: 117
- 15 Miller TG, Thanassi JW. J. Org. Chem. 1960; 25: 2009
- 16a Liu J.-B, Yan H. Tetrahedron Lett. 2013; 54: 891
- 16b Lu H, Yang Q, Zhou YR, Guo YQ, Deng ZH, Ding QP, Peng YY. Org. Biomol. Chem. 2014; 12: 758
- 16c Zhang CY, Zhou YR, Deng ZH, Chen X, Peng YY. Eur. J. Org. Chem. 2015; 1735
- 16d Peng YY, Zeng MJ, Wang HM, Zhu J, Yang Q, Deng ZH, Yu CY. Tetrahedron 2015; 71: 9457
- 16e Liu J.-B, Zhou H.-P, Peng Y. -Y. Tetrahedron Lett. 2014; 55: 2872
- 16f Gao W, Ding Q, Yuan J, Mao X, Peng Y. Chin. J. Chem. 2017; 35: 1717
- 17 Sun X, Yu S. Org. Lett. 2014; 16: 2938
- 18 Polley A, Bairy G, Das P, Jana R. Adv. Synth. Catal. 2018; 360: 4161
- 19a Morimoto K, Makino K, Sakata G. J. Fluorine Chem. 1992; 59: 417
- 19b Ando M, Wada T, Sato N. Org. Lett. 2006; 8: 3805
- 19c Rakhimov AI, Kameneva IY, Navrotskii MB, Titova ES, Kudashev SV. Zh. Obshch. Khim. 2008; 78: 828
- 19d Fuchibe K, Koseki Y, Aono T, Sasagawa H, Ichikawa J. J. Fluorine Chem. 2012; 133: 52
- 19e Maiti S, Kim J, Park J.-H, Nam D, Lee JB, Kim Y.-J, Kee J.-M, Seo JK, Myung K, Rohde J.-U, Choe W, Kwon O.-H, Hong SY. J. Org. Chem. 2019; 84: 6737
- 20 Hour M.-J, Huang L.-J, Kuo S.-C, Yia Y, Bastow K, Nakanishi Y, Hamel E, Lee K.-H. J. Med. Chem. 2000; 43: 4479
- 21 Wei L.-S, He G.-X, Kong X.-F, Peng C.-X, Mo D.-L, Su G.-F. J. Org. Chem. 2018; 83: 6719
- 22 Zhang YG, Huang J, Deng ZH, Mao XC, Peng YY. Tetrahedron 2018; 74: 2330
- 23 Li H, He L, Neuman H, Beller M, Wu X.-F. Green Chem. 2014; 16: 1336