Der Nuklearmediziner 2021; 44(02): 120-126
DOI: 10.1055/a-1380-7815
Aktuelle Trends aus den Radiopharmazeutischen Wissenschaften

Möglichkeiten und Grenzen der Nutzung kleiner Zyklotrone bei der Produktion medizinisch relevanter Radionuklide

Possibilities and limits of use of small cyclotrons for production of medically relevant radionuclides
Bernd Neumaier
Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, Jülich
,
Ingo Spahn
Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, Jülich
,
Syed M. Qaim
Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, Jülich
› Institutsangaben

Zusammenfassung

Radionuklide für die Bildgebung sowie für die interne Radiotherapie werden in Kernreaktoren sowie an Zyklotronen erzeugt. In diesem Beitrag sollen verschiedene Optionen, Radionuklide an einem kleinen medizinischen Zyklotron (Ep ≤ 18 MeV; Ed ≤ 9 MeV) zu erzeugen, diskutiert werden. Neben der Routineproduktion kurzlebiger „Standard“-Positronenstrahler, wie 11C, 15O und 18F, können auch zahlreiche „Nicht-Standard“-Positronenstrahler, wie 64Cu, 86Y, 89Zr usw., für weitere Anwendungen in der Positronenemissionstomographie (PET) in ausreichender Menge hergestellt werden. Dies setzt voraus, dass ein geeignetes Targetsystem zur Bestrahlung von angereichertem Targetmaterial zur Verfügung steht. Prinzipiell ist es außerdem möglich, einige SPECT-Radionuklide (67Ga, 111In, 123I) sowie Therapienuklide (67Cu, 103Pd, 186Re) in geringen Mengen zu produzieren.

Abstract

Radionuclides for in vivo imaging studies as well as for internal radiotherapy are produced using both nuclear reactors and cyclotrons. In this contribution we discuss the possibilities of production of different types of radionuclides using a small medical cyclotron (Ep  = 18 MeV; Ed = 9 MeV). Besides routine production of short-lived “standard” positron emitters 11C, 15O and 18F, several “non-standard” positron emitters like 64Cu, 86Y, 89Zr etc. could also be produced in quantities sufficient for extended positron emission tomography. It is, however, necessary to develop a suitable target system for irradiation of enriched material. In principle, it is then also possible to produce in small amounts a few SPECT radionuclides (67Ga, 111In, 123I) as well as therapy-related radionuclides (67Cu, 103Pd, 186Re).



Publikationsverlauf

Artikel online veröffentlicht:
10. Juni 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Referenzen

  • 1 Stöcklin G, Qaim SM, Rösch F. The impact of radioactivity on medicine. Radiochimica Acta 1995; 70: 249-272
  • 2 Qaim SM, Coenen HH. Produktion pharmazeutisch relevanter Radionuklide. Pharmazie in Unser Zeit 2005; 34: 7
  • 3 Qaim SM. The present and future of medical radionuclide production. Radiochimica Acta 2012; 100: 17
  • 4 Handbook of Nuclear Chemistry, Second Edition, Volume 4. Vértes A, Nagy S, Klenesár Z, Lovas RG, Rösch F. Berlin, Heidelberg: Springer; S. Beiträge: “Reactor-produced medical radionuclides” von S Mirzadeh, LF Mausner und MA Garland, pp. 1857-1902, und “Cyclotron production of medical radionuclides”, von SM Qaim, pp. 1903-1933. 2011
  • 5 Qaim SM. Medical Radionuclide Production – Science and Technology. Berlin: De Gruyter; 2019: 1-288
  • 6 Synowiecki MA, Perk LR, Nijsen JFW. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharmacy and Chemistry 2018; 3: 3 DOI: 10.1186/s41181-018-0038-z.
  • 7 Radiopharmaceuticals for Positron Emission Tomography – Methodological Aspects. Stöcklin G, Pike VW. Dordrecht: Kluwer; 1993: 1-178
  • 8 Qaim SM, Scholten B, Spahn I. et al. Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use. Radiochimica Acta 2019; 107: 1011-1026 DOI: 10.1515/ract-2019-3154.
  • 9 Qaim SM. Development of novel positron emitters for medical applications: Nuclear and radiochemical aspects. Radiochimica Acta 2011; 99: 611-625 DOI: 10.1524/ract.2011.1870.
  • 10 Qaim SM. Nuclear data for production and medical application of radionuclides: Present status and future needs. Nuclear Medicine and Biology 2017; 44: 31-49 DOI: 10.1016/j.nucmedbio.2016.08.016.
  • 11 Spellerberg S, Scholten B, Spahn I. et al. Target development for diversified irradiations at a medical cyclotron. Applied Radiation and Isotopes 2015; 104: 106-112 DOI: 10.1016/j.apradiso.2015.06.010.
  • 12 Vogg ATJ, Lang R, Meier-Boeke P, Scheel W, Reske SN, Neumaier B. Cyclotron production of radionuclides in aqueous target matrices as alternative to solid state targetry: production of 86Y as example. Proc. 6th International Conference on Nuclear and Radiochemistry. SM Qaim, HH Coenen. Aachen: 2004. 3. 318-320
  • 13 Hoehr C, Oehlke E, Benard F. et al. 44gSc production using a water target on a 13 MeV cyclotron. Nuclear Medicine and Biology 2014; 41: 401-406
  • 14 Alves F, Alves VHP, Do CarmoSJC. et al. Production of copper-64 and gallium-68 with a medical cyclotron using liquid targets. Modern Physics Letters A 2017; 32: 1740013
  • 15 Hoehr C, Morley T, Buckley K. et al. Radiometals form liquid targets: 94mTc production using a standard water target on a 13 MeV cyclotron. Applied Radiation and Isotopes 2012; 70: 2308-2312
  • 16 Pandey MK, Byrne JF, Jiang H. et al. Cyclotron production of 68Ga via the 68Zn(p,n)68Ga reaction in aqueous solution. American Journal of Nuclear Medicine and Molecular Imaging 2014; 4: 8
  • 17 Pandey MK, Bansal A, Engelbrecht HP. et al. Improved production and processing of 89Zr using a solution target. Nuclear Medicine and Biology 2016; 43: 4
  • 18 Do Carmo SJC, Scott PJH, Alves F. Production of radiometals in liquid targets. EJNMMI Radiopharmacy and Chemistry 2020; 5: 21
  • 19 Pandey MK, DeGrado TR. Cyclotron production of PET radiometals in liquid targets: Aspects and prospects. Current Radiopharmaceuticals 2020; 13: 1-15
  • 20 Qaim SM. Theranostic radionuclides: recent advances in production methodologies. Journal of Radioanalytical and Nuclear Chemistry 2019; 322: 1257-1266
  • 21 Uddin MS, Scholten B, Basunia MS. et al. Accurate determination of production data of the non-standard positron emitter 86Y via the 86Sr(p,n)-reaction. Radiochimica Acta 2020; 108: 747-756
  • 22 International Atomic Energy Agency. Nuclear data for the production of therapeutic radionuclides. Technical Report Series No. 473, Qaim SM, Tárkányi F, Capote R (Editors), IAEA. Vienna: 2011
  • 23 International Atomic Energy Agency. Charged Particle Cross-Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions. IAEA-TECDOC-1211, IAEA. Vienna: 2001
  • 24 Qaim SM, Sudar S, Scholten B. et al. Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo(p,2n)99mTc- reactions: Estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Applied Radiation and Isotopes 2014; 85: 101-113 DOI: 10.1016/j.apradiso.2013.10.004.
  • 25 Hussain M, Sudar S, Aslam MN. et al. Evaluation of charged particle induced reaction cross section data for production of the important therapeutic radionuclide 186Re. Radiochimica Acta 2010; 98: 385-395 DOI: 10.1524/ract.2010.1733.
  • 26 Hilgers K, Stoll T, Skakun Y. et al. Cross-section measurements of the nuclear reactions natZn(d,x)64Cu, 66Zn(d,α)64Cu and 68Zn(p,αn)64Cu for production of 64Cu and technical developments for small-scale production of 67Cu via the 70Zn(p,α)67Cu process. Applied Radiation and Isotopes 2003; 59: 341-351
  • 27 Balkin ER, Gagnon K, Dorman E. et al. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process. Radiochimica Acta 2017; 105: 1071-1081