Radiologie up2date 2021; 21(03): 247-267
DOI: 10.1055/a-1382-7166
Muskuloskelettale Erkrankungen

Stressfrakturen und andere stressinduzierte Verletzungen

Stress Fractures and Other Stress Injuries
Carsten Hackenbroch
,
Marc-André Weber
,
Kolja M. Thierfelder

Zusammenfassung

Stressfrakturen sind in der klinischen Routine durchaus häufig. Sie werden mit der konventionellen Röntgentechnik als Standardmethode und für spezielle Fragestellungen mit der MRT und der CT diagnostiziert. In dieser Arbeit werden Stressfrakturen und andere stressinduzierte Verletzungen mit ihren typischen Befunden in der Bildgebung vorgestellt.

Abstract

Stress injuries are caused by a repeated exposure to mechanical strain. The resulting fractures can be differentiated into fatigue fractures, which affect healthy bone, and insufficiency fractures, in which the bone strength is already reduced. If a stress fracture is suspected, conventional radiography is still the standard imaging modality. If it is negative, an MRI can be performed. It has a much higher sensitivity, especially in the early stage of stress fracture, and provides further information if the fracture is caused by other factors, such as malignancy. CT, on the other hand, is mainly suitable for the exact visualization of the fracture process and thus e.g. for preoperative planning. For a correct diagnosis, it is important to be familiar with the appropriate modalities and the respective imaging findings of stress injuries.

Kernaussagen
  • Stressinduzierte Verletzungen, insbesondere die Stressfrakturen, sind in der klinischen Routine sehr häufig. Sie können unterschieden werden in Ermüdungsfrakturen, die gesunden Knochen betreffen, und Insuffizienzfrakturen, bei denen der Knochen bereits vorgeschädigt ist.

  • Die Bildgebung spielt eine zentrale Rolle, da die klinische Untersuchung i. d. R. nicht ausreicht, um eine Stressfraktur zu diagnostizieren.

  • Ist die konventionelle Röntgenuntersuchung negativ, sollte bei fortbestehenden Beschwerden eine MRT durchgeführt werden.

  • Für eine korrekte Diagnosestellung ist es wichtig, mit den geeigneten Modalitäten und den jeweiligen bildgebenden Befunden der Stressfrakturen und der übrigen stressinduzierten Verletzungen vertraut zu sein.



Publication History

Article published online:
06 September 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Peterson H. Physeal Injury other than Fracture. Mayo Foundation for Medical Education and Research 2012;
  • 2 Wuennemann F, Kintzelé L, Weber MA. et al. [Radiologic diagnosis of pathologic fractures]. Radiologe 2020; 60: 498-505
  • 3 Marshall RA, Mandell JC, Weaver MJ. et al. Imaging Features and Management of Stress, Atypical, and Pathologic Fractures. Radiographics 2018; 38: 2173-2192
  • 4 Rommens PM, Wagner D, Hofmann A. [Osteoporotic fractures of the pelvic ring]. Z Orthop Unfall 2012; 150: e107-e118 quiz e119-120
  • 5 Frost HM. A 2003 update of bone physiology and Wolffʼs Law for clinicians. Angle Orthod 2004; 74: 3-15
  • 6 DeFroda SF, Cameron KL, Posner M. et al. Bone Stress Injuries in the Military: Diagnosis, Management, and Prevention. Am J Orthop (Belle Mead NJ) 2017; 46: 176-183
  • 7 Mandell JC, Khurana B, Smith SE. Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis. Skeletal Radiol 2017; 46: 1165-1186
  • 8 Omar IM, Zoga AC, Kavanagh EC. et al. Athletic pubalgia and “sports hernia”: optimal MR imaging technique and findings. Radiographics 2008; 28: 1415-1438
  • 9 Davies AG, Clarke AW, Gilmore J. et al. Review: imaging of groin pain in the athlete. Skeletal Radiol 2010; 39: 629-644
  • 10 Anderson K, Strickland SM, Warren R. Hip and groin injuries in athletes. Am J Sports Med 2001; 29: 521-533
  • 11 Wong JS, Lalam R, Cassar-Pullicino VN. et al. Stress Injuries of the Spine in Sports. Semin Musculoskelet Radiol 2020; 24: 262-276
  • 12 Geiger J, Rottenburger C, Uhl M. Stressfrakturen. Radiologie up2date 2010; 10
  • 13 Mountjoy M, Sundgot-Borgen JK, Burke LM. et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med 2018; 52: 687-697
  • 14 Mack MG. Möglichkeiten und Grenzen der Bildgebung bei Stressfrakturen. Sportphysio 2020; 8: 83-88
  • 15 Thierfelder KM, Gerhardt JS, Langner S. et al. [Special aspects of stress fractures]. Radiologe 2020; 60: 506-513
  • 16 Hackenbroch C, Feilhuber M, Halt D. et al. Low-Dose CT in Pelvic Imaging: Comparing Dose and Image Quality in Relation to Clinical Value in a Phantom Study. AJR Am J Roentgenol 2021; 216: 453-463
  • 17 Palm HG, Lang P, Hackenbroch C. et al. Dual-energy CT as an innovative method for diagnosing fragility fractures of the pelvic ring: a retrospective comparison with MRI as the gold standard. Arch Orthop Trauma Surg 2020; 140: 473-480
  • 18 Dobrindt O, Hoffmeyer B, Ruf J. et al. MRI versus bone scintigraphy. Evaluation for diagnosis and grading of stress injuries. Nuklearmedizin 2012; 51: 88-94
  • 19 Draghi F. Ultrasonography of Occult and Stress Fractures in Sports Medicine. In: Ultrasonography of the Lower Extremity. Cham: Springer; 2019
  • 20 Fredericson M, Bergman AG, Hoffman KL. et al. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 1995; 23: 472-481
  • 21 Arendt EA, Griffiths HJ. The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med 1997; 16: 291-306
  • 22 Nattiv A, Kennedy G, Barrack MT. et al. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am J Sports Med 2013; 41: 1930-1941
  • 23 Mandell JC, Khurana B, Smith SE. Stress fractures of the foot and ankle, part 1: biomechanics of bone and principles of imaging and treatment. Skeletal Radiol 2017; 46: 1021-1029
  • 24 OʼDell MC, Jaramillo D, Bancroft L. et al. Imaging of Sports-related Injuries of the Lower Extremity in Pediatric Patients. Radiographics 2016; 36: 1807-1827
  • 25 Cabarrus MC, Ambekar A, Lu Y. et al. MRI and CT of insufficiency fractures of the pelvis and the proximal femur. AJR Am J Roentgenol 2008; 191: 995-1001
  • 26 Drapé JL. Advances in magnetic resonance imaging of musculoskeletal tumours. Orthop Traumatol Surg Res 2013; 99: S115-123
  • 27 Schünke M, Schulte E, Schumacher U. et al. 4. Knochen und Knochenverbindungen. In: Schünke M, Schulte E, Schumacher U. et al., Hrsg. Prometheus LernAtlas – Allgemeine Anatomie und Bewegungssystem. Illustrationen von Voll M und Wesker K. 5. Auflage. Stuttgart: Thieme; 2018
  • 28 Schmeel FC, Luetkens JA, Kukuk GM. Fokale periphyseale Ödeme: Eine wichtige Differenzialdiagnose bei Kniegelenkschmerzen in der Wachstumsphase. Rofo 2016; 188: 302-303