Synthesis 2021; 53(13): 2183-2191 DOI: 10.1055/a-1385-9398
Synthetic Applications and Computational Perspectives on Eosin Y Induced Direct HAT Process
Joan Inoa
,
Grecia Dominici
,
Reem Eldabagh
,
Jonathan J. Foley IV∗
,
Yalan Xing∗
Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund (PRF#58838-UNI1 and PRF#58853-UNI6) for support of this research. J.J.F. acknowledges the ART program at WPU for partial support of this work.
Abstract
In recent years, advancements in photocatalysis have allowed for a plethora of chemical transformations under milder conditions. Many of these photochemical reactions utilize hydrogen atom transfer processes to obtain desired products. Hydrogen atom transfer processes can follow one of two unique pathways: the first, a direct path and the second, an indirect path. In this paper, we highlight the ability of eosin Y to act as a direct hydrogen atom transfer catalyst from both synthetic and computational chemistry perspectives.
Key words
hydrogen atom transfer -
Eosin Y -
photocatalysis -
visible light -
computational study
Publikationsverlauf
Eingereicht: 01. Dezember 2020
Angenommen nach Revision: 08. Februar 2021
Accepted Manuscript online: 08. Februar 2021
Artikel online veröffentlicht: 10. März 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Yoon TP,
Ischay MA,
Du J.
Nat. Chem. 2010; 2: 527
1b
Schultz DM,
Yoon TP.
Science 2014; 343: 985
1c
Prier CK,
Rankic DA,
MacMillan DW. C.
Chem. Rev. 2013; 113: 5322
1d
Narayanam JM. R,
Stephenson CR. J.
Chem. Soc. Rev. 2011; 40: 102
1e
Bian C,
Singh AK,
Niu L,
Yi H,
Lei A.
Asian J. Org. Chem. 2017; 6: 386
1f
Shaw MH,
Twilton J,
Macmillan DW. C.
J. Org. Chem. 2016; 81: 6898
2a
Prier CK,
Rankic DA,
MacMillan DW. C.
Chem. Rev. 2013; 113: 5322
2b
Narayanam JM. R,
Stephenson CR. J.
Chem. Soc. Rev. 2011; 40: 102
2c
Bian C,
Singh AK,
Niu L,
Yi H,
Lei A.
Asian J. Org. Chem. 2017; 6: 386
2d
Stephenson CR. J,
Yoon TP,
MacMillan DW. C.
Visible Light Photocatalysis in Organic Chemistry
. Wiley; Weinheim: 2018
3
Marzo L,
Pagire SK,
Reiser O,
König B.
Angew. Chem. Int. Ed. 2018; 57: 10034
4
Prier CK,
Rankic DA,
MacMillan DW. C.
Chem. Rev. 2013; 113: 5322
5a
Romero NA,
Nicewicz DA.
Chem. Rev. 2016; 116: 10075
5b
Wei G,
Basheer C,
Tan C.-H,
Jiang Z.
Tetrahedron Lett. 2016; 57: 3801
6
Ravelli D,
Fagnoni M,
Albini A.
Chem. Soc. Rev. 2013; 42: 97
7
Capaldo L,
Ravelli D.
Eur. J. Org. Chem. 2017; 2016
8a
Fagnoni M,
Dondi D,
Ravelli D,
Albini A.
Chem. Rev. 2007; 107: 2725
8b
Ravelli D,
Protti S,
Fagnoni M.
Acc. Chem. Res. 2016; 49: 2232
9
Gentry EC,
Knowles RR.
Acc. Chem. Res. 2016; 49: 1546
10
Ravelli D,
Protti S,
Fagnoni M.
Chem. Rev. 2016; 116: 9850
11a
Protti S,
Fagnoni M,
Ravelli D.
ChemCatChem 2015; 7: 1516
11b
Raviola C,
Raveli D.
Synlett 2019; 30: 803
12
Fan X,
Rong J,
Wu H,
Zhou Q,
Deng H,
Tan J,
Xue C,
Wu L,
Tao H,
Wu J.
Angew. Chem. Int. Ed. 2018; 57: 8514
13a
Romero NA,
Nicewicz DA.
Chem. Rev. 2016; 116: 10075
13b
Hari DP,
König B.
Chem. Commun. 2014; 50: 6688
14
Srivastava V,
Singh P.
RSC Adv. 2017; 7: 31377
15
Yan D,
Chen J,
Xiao W.
Angew. Chem. Int. Ed. 2019; 58: 378
16
Kuang Y,
Wang K,
Shi X,
Huang X,
Meggers E,
Wu J.
Angew. Chem. Int. Ed. 2019; 58: 16859
17
DeMartino MP,
Chen K,
Baran PS.
J. Am. Chem. Soc. 2008; 130: 11546
18
Roth HG,
Romero NA,
Nicewicz DA.
Synlett 2016; 27: 714
19
Yan J,
Cheo HW,
Teo W,
Shi X,
Idres S,
Deng L,
Wu J.
J. Am. Chem. Soc. 2020; 142: 11357
20a
Combs AP,
Zhu W,
Crawley ML,
Glass B,
Polam P,
Sparks RB,
Modi D,
Takvorian A,
McLaughlin E,
Yue EW,
Wasserman Z,
Bower M,
Wei M,
Rupar M,
Ala PJ,
Reid BM,
Ellis D,
Gonneville L,
Emm T,
Taylor N,
Yeleswaram S,
Li Y,
Wynn R,
Burn TC,
Hollis G,
Liu PC. C.
J. Med. Chem. 2006; 49: 3774
20b
Maccari R,
Ottanà R.
J. Med. Chem. 2012; 55: 2
21
Fan X,
Xiao P,
Jiao Z,
Yang T,
Dai X,
Xu W,
Tan J,
Cui G,
Su H,
Fang W,
Wu J.
Angew. Chem. Int. Ed. 2019; 58: 12580
22
Lalonde M,
Chan TH.
Synthesis 1985; 817
23a
Savela R,
Zawartka W,
Leino R.
Organometallics 2012; 31: 3199
23b
Pongkittiphan V,
Theodorakis EA,
Chavasiri W.
Tetrahedron Lett. 2009; 50: 5080
23c
Kusukawa T,
Kabe Y,
Nestler B,
Ando W.
Organometallics 1995; 14: 2556
23d
Sommer LH,
Frye CL,
Parker GA,
Michael KW.
J. Am. Chem. Soc. 1964; 86: 3271
23e
Curtice J,
Gilman H,
Hammond GS.
J. Am. Chem. Soc. 1957; 79: 4754
24
Inoa J,
Patel M,
Dominici G,
Eldabagh R,
Patel A,
Lee J,
Xing Y.
J. Org. Chem. 2020; 85: 6181
25a
Terent’ev AO,
Borisov DA,
Vil VA,
Dembitsky VM.
Beilstein J. Org. Chem. 2014; 10: 34
25b
Dembitsky VM.
J. Mol. Genet. Med. 2015; 9: 1
25c
Norris MD,
Perkins MV.
Nat. Prod. Rep. 2016; 33: 861
26
Srivastava V,
Singh PK,
Singh PP.
Tetrahedron Lett. 2019; 60: 1333
27a
Beatty JW,
Stephenson CR. J.
Acc. Chem. Res. 2015; 48: 1474
27b
Froidevaux V,
Negrell C,
Caillol S,
Pascault JP,
Boutevin B.
Chem. Rev. 2016; 116: 14181
27c
Dutcher B,
Fan M,
Russell AG.
ACS Appl. Mater. Interfaces 2015; 7: 2137
28
Ansari MA,
Yadav D,
Soni S,
Srivastava A,
Singh MS.
J. Org. Chem. 2019; 84: 5404
29a
Jagodziński TS.
Chem. Rev. 2003; 103: 197
29b
Ransborg LK,
Albrecht Ł,
Weise CF,
Bak JR,
Jørgensen KA.
Org. Lett. 2012; 14: 724
29c
Samai S,
Chanda T,
Ila H,
Singh MS.
Eur. J. Org. Chem. 2013; 4026
29d
Wen L.-R,
Men L.-B,
He T,
Ji G.-J,
Li M.
Chem. Eur. J. 2014; 20: 5028
29e
Luo X,
Ge L.-S,
An X.-L,
Jin J.-H,
Wang Y,
Sun P.-P,
Deng W.-P.
J. Org. Chem. 2015; 80: 4611
29f
Li M,
Kong X.-J,
Wen L.-R.
J. Org. Chem. 2015; 80: 11999
29g
Li C.-X,
Liu R.-J,
Yin K,
Wen L.-R,
Li M.
Org. Biomol. Chem. 2017; 15: 5820
29h
Man N.-N,
Wang J.-Q,
Zhang L.-M,
Wen L.-R,
Li M.
J. Org. Chem. 2017; 82: 5566
30
Chen M,
Di J,
Li J,
Mo L,
Zhang Z.
Tetrahedron 2020; 76: 131059
31a
Han C,
Zhang T,
Zhang AQ,
Wang DD,
Shi WM,
Tao JC.
Synthesis 2014; 46: 1389
31b
Yang YT,
Zhu JF,
Liao GC,
Xu HJ,
Yu BT.
Curr. Med. Chem. 2018; 25: 2233
32a
Garavelli M.
Theor. Chem. Acc. 2006; 116: 87
32b
Schreiner PR.
In
The Investigation of Organic Reactions and their Mechanisms, Chap. 7
.
Maskill H.
Blackwell Publishing Ltd; Oxford: 2006
33
Tomasi J,
Mennucci B,
Cammi R.
Chem. Rev. 2005; 105: 2999
34
Hohenstein EG,
Chill ST,
Sherrill CD.
J. Chem. Theory Comput. 2008; 4: 1996
35a
Tully JC.
J. Chem. Phys. 1990; 93: 1061
35b
Subotnik JE,
Jain A,
Landry B,
Petit A,
Outang W,
Bellonzi N.
Annu. Rev. Phys. Chem. 2016; 67: 387
35c
Martinez TJ,
Ben-Nun M,
Levine RD.
J. Phys. Chem. 1996; 100: 7884
35d
Curchod BF. E,
Martínez TJ.
Chem. Rev. 2018; 118: 3305
36
Hohestein EG.
J. Am. Chem. Soc. 2016; 138: 1868
37
Slavíček P,
Martínez TJ.
J. Chem. Phys. 2010; 132: 234102
38
Jorgensen WL,
Chandrasekhar J,
Madura J.
J. Chem. Phys. 1983; 79: 926