RSS-Feed abonnieren
DOI: 10.1055/a-1389-1203
Functionalized Cyclopropanes as Versatile Intermediates for the Diversity-Oriented Synthesis of γ-Lactones, γ-Lactams and δ-Lactams
The authors are grateful to the Brazilian governmental agencies CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPESC (Fundação de Amparo à Pesquisa do Estado de Santa Catarina) for fellowships. Support from INCT-Catálise/FAPESC/ CNPq/CAPES (Instituto Nacional de Ciência e Tecnologia Catálise em Sistemas Moleculares e Nanoestruturados) is also gratefully acknowledged.

To Professor Albert J. Kascheres, in memoriam
Abstract
A two-step procedure for the preparation of cyclopropanecarboxaldehyde-1,1-diester from a γ,δ-epoxyester and its synthetic versatility are described herein. The epoxide ring-opening/cyclopropanation process occurs in the presence of Mg(ClO4)2 under heating, resulting in cyclopropanemethanol-1,1-diester in 65% yield. A mild TEMPO-mediated oxidation of this substrate readily generated the corresponding aldehyde in 75% yield, which was applied in the one-pot synthesis of four cyclopropylidene-γ-lactams and three δ-lactams. In addition, vinylcyclopropanes were obtained through the Wittig reaction of the aldehyde with phosphonium salts and used as precursors for tetrahydrofurans.
Key words
γ,δ-epoxyester - cyclopropanecarboxaldehyde - lactonization - cyclopropylidene-γ-lactams - δ-lactams - one-pot process - structural diversitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1389-1203.
- Supporting Information
Publikationsverlauf
Eingereicht: 30. November 2020
Angenommen nach Revision: 11. Februar 2021
Accepted Manuscript online:
11. Februar 2021
Artikel online veröffentlicht:
09. März 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
- 2 Brackmann F, de Meijere A. Chem. Rev. 2007; 107: 4538
- 3 Tang P, Qin Y. Synthesis 2012; 44: 2669
- 4 Green JR, Snieckus V. Synlett 2014; 25: 2258
- 5 Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 6 Budynina EM, Ivanov KL, Sorokin ID, Melnikov MY. Synthesis 2017; 49: 3035
- 7 Singh P, Varshnaya RK, Dei R, Banerjee P. Adv. Synth. Catal. 2020; 362: 1447
- 8 Chen DY.-K, Pouwer RH, Richard JA. Chem. Soc. Rev. 2012; 41: 4631
- 9 Talele TT. J. Med. Chem. 2016; 59: 8712
- 10 Casar Z. Synthesis 2020; 52: 1315
- 11 Craig AJ, Hawkins BC. Synthesis 2020; 52: 27
- 12a Dey R, Banerjee P. Adv. Synth. Catal. 2019; 361: 2849
- 12b Díaz E, Reyes E, Uria U, Carillo L, Tejero T, Merino P, Vicario JL. Chem. Eur. J. 2018; 24: 8764
- 12c Wallbaum J, Garve LK. B, Jones PG, Werz DB. Chem. Eur. J. 2016; 22: 18756
- 12d Li L, Li Z, Wang Q. Synlett 2009; 1830
- 12e Sohn SS, Bode JW. Angew. Chem. Int. Ed. 2006; 45: 6021
- 13a Kumar P, Kumar R, Banerjee P. J. Org. Chem. 2020; 85: 6535
- 13b Dey R, Rajput S, Banerjee P. Tetrahedron 2020; 76: 131080
- 14a Singh P, Kaur N, Banerjee P. J. Org. Chem. 2020; 85: 3393
- 14b Dey R, Kumar P, Banerjee P. J. Org. Chem. 2018; 83: 5438
- 14c Kumar P, Dey R, Banerjee P. Org. Lett. 2018; 20: 5163
- 14d Kim C, Kim SG. Tetrahedron: Asymmetry 2014; 25: 1376
- 14e Lv H, Mo J, Fang X, Chi YR. Org. Lett. 2011; 13: 5366
- 15a Han X, Fan J, Lu H, Wan C, Li X, Li H, Yang D, Zhang Y, Xiao Y, Qin Z. Bioorg. Med. Chem. 2015; 23: 6210
- 15b Kobayashi T, Watanabe M, Yoshida A, Yamada S, Ito M, Abe H, Ito Y, Arisawa M, Shuto S. Bioorg. Med. Chem. 2010; 18: 1076
- 15c Coxon GD, Al-Dulayymi JR, Baird MS, Knobl S, Roberts E, Minnikin DE. Tetrahedron: Asymmetry 2003; 14: 1211
- 16a Prieto L, Sánchez-Díez E, Uria U, Reyes E, Carrillo L, Vicario JL. Adv. Synth. Catal. 2017; 359: 1678
- 16b Bao J, Ren J, Wang Z. Eur. J. Org. Chem. 2012; 2511
- 16c Li L, Du D, Ren J, Wang Z. Eur. J. Org. Chem. 2011; 614
- 16d Du D, Wang Z. Eur. J. Org. Chem. 2008; 4949
- 16e Dancsó A, Kajtár-Peredy M, Szántay C. J. Heterocycl. Chem. 1989; 26: 1867
- 16f Engel CR, De Krassny AF, Bélanger A, Dionne G. Can. J. Chem. 1973; 51: 3263
- 17 Warner DT. J. Org. Chem. 1959; 24: 1536
- 18 Ariente-Fliche C, Braun J, Le Goffic F. Synth. Commun. 1992; 22: 1149
- 19 Uria U, Vicario JL, Badía D, Carrillo L, Reyes E, Pesquera A. Synthesis 2010; 701
- 20 Llanes P, Escrich CR, Sayalero S, Pericàs MA. Org. Lett. 2016; 18: 6292
- 21 Companyó X, Rios R, Alba AN, Cárdenas F, Moyano A, Rios R. Eur. J. Org. Chem. 2009; 3075
- 22 Marques MV, Sá MM. J. Org. Chem. 2014; 79: 4650
- 23 Maximiano AP, Sá MM. Eur. J. Org. Chem. 2019; 6515
- 24a Neises B, Steglich W. Angew. Chem., Int. Ed. Engl. 1978; 17: 522
- 24b Lutjen AB, Quirk MA, Barbera AM, Kolonko EM. Bioorg. Med. Chem. 2018; 26: 5291
- 25a Chagarovskiy AO, Ivanova OA, Rakhmankulov ER, Budynina EM, Trushkov IV, Melnikov MY. Adv. Synth. Catal. 2010; 352: 3179
- 25b Gupta A, Yadav VK. Tetrahedron Lett. 2006; 47: 8043
- 26 De Luca L, Giacomelli G, Porcheddu A. Org. Lett. 2001; 3: 3041
- 27a Defosseux M, Blanchard N, Meyer C, Cossy J. Tetrahedron 2005; 61: 7632
- 27b Dullayymi JR. A, Baird MS, Roberts E, Deysel M, Verschoor J. Tetrahedron 2007; 63: 2571
- 28a de Meijere A, Kozhushkov SI, Yufit DS, Grosse C, Kaiser M, Raev VA. Beilstein J. Org. Chem. 2014; 10: 2844
- 28b Zhao Q, Wong HN. C. Tetrahedron 2007; 63: 6296
- 29a Pohlhaus PD, Johnson JS. J. Org. Chem. 2005; 70: 1057
- 29b Parsons AT, Johnson JS. J. Am. Chem. Soc. 2009; 131: 3122
- 29c Carson CA, Kerr MA. J. Org. Chem. 2005; 70: 8242
- 30a Ivanova OA, Chagarovskiy AO, Shumsky AN, Krasnobrov VD, Levina II, Trushkov IV. J. Org. Chem. 2018; 83: 543
- 30b Budynina EM, Ivanova OA, Chagarovskiy AO, Grishin YK, Trushkov IV, Melnikov MY. J. Org. Chem. 2015; 80: 12212
- 30c Qu JP, Deng C, Zhou J, Sun XL, Tang Y. J. Org. Chem. 2009; 74: 7684
- 31a Esposito A, D’Alonzo D, De Fenza M, De Gregorio E, Tamanini A, Lippi G, Dechecchi MC, Guaragna A. Int. J. Mol. Sci. 2020; 21: 3353
- 31b Hensienne R, Hazelard D, Compain P. ARKIVOC 2019; (iv): 4
- 31c Arora I, Kashyap VK, Singh AK, Dasgupta A, Kumar B, Shaw AK. Org. Biomol. Chem. 2014; 12: 6855
- 31d Horne G, Wilson FX, Tinsley J, Williams DH, Storer R. Drug Discovery Today 2011; 16: 107
- 31e Stocker BL, Dangerfield EM, Win-Mason AL, Haslett GW, Timmer MS. T. Eur. J. Org. Chem. 2010; 1615
- 32 Ren X, Chandgude AL, Fasan R. ACS Catal. 2020; 10: 2308
- 33 Terrasson V, van der Lee A, Figueiredo RM, Campagne JM. Chem. Eur. J. 2010; 16: 7815
- 34a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 34b Li L, Chen M, Jiang F.-C. Bioorg. Med. Chem. 2016; 24: 1853
- 34c Zhang F, Liu Z.-J, Liu J.-T. Tetrahedron 2010; 66: 6864
- 35a Ngwendson JN, Schultze CM, Bollinger JW, Banerjee A. Can. J. Chem. 2008; 86: 668
- 35b Mitsumori T, Koga N, Iwamura H. J. Phys. Org. Chem. 1994; 7: 43
- 36 Verma K, Banerjee P. Adv. Synth. Catal. 2017; 359: 3848
- 37 Liao M, Dong S, Deng G, Wang J. Tetrahedron Lett. 2006; 47: 4537
- 38 Zheng B. Ph.D. Dissertation. University of Hong Kong; P. R. of China: 2005
- 39 Huang X, Klimczyk S, Veiros LF, Maulide N. Chem. Sci. 2013; 4: 1105
- 40 Ngamnithiporn A, Jette CI, Bachman S, Virgil SC, Stoltz BM. Chem. Sci. 2018; 9: 2547