RSS-Feed abonnieren
DOI: 10.1055/a-1400-9754
The Role of Skeletal Muscles in Exertional Heat Stroke Pathophysiology

Abstract
The active participation of skeletal muscles is a unique characteristic of exertional heat stroke. Nevertheless, the only well-documented link between skeletal muscle activities and exertional heat stroke pathophysiology is the extensive muscle damage (e. g., rhabdomyolysis) and subsequent leakage of intramuscular content into the circulation of exertional heat stroke victims. Here, we will present and discuss rarely explored roles of skeletal muscles in the context of exertional heat stroke pathophysiology and recovery. This includes an overview of heat production that contributes to severe hyperthermia and the synthesis and secretion of bioactive molecules, such as cytokines, chemokines and acute phase proteins. These molecules can alter the overall inflammatory status from pro- to anti-inflammatory, affecting other organ systems and influencing recovery. The activation of innate immunity can determine whether a victim is ready to return to physical activity or experiences a prolonged convalescence. We also provide a brief discussion on whether heat acclimation can shift skeletal muscle secretory phenotype to prevent or aid recovery from exertional heat stroke. We conclude that skeletal muscles should be considered as a key organ system in exertional heat stroke pathophysiology.
Publikationsverlauf
Eingereicht: 21. November 2020
Angenommen: 09. Februar 2021
Artikel online veröffentlicht:
26. März 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Laitano O, Leon LR, Roberts WO. et al Controversies in exertional heat stroke diagnosis, prevention, and treatment. J Appl Physiol (1985) 2019; 127: 1338-1348
- 2 Leon LR, Bouchama A. Heat stroke. Compr Physiol 2015; 5: 611-647
- 3 Sawka MN, Leon LR, Montain SJ. et al Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol 2011; 1: 1883-1928
- 4 Launstein ED, Miller KC, O’Connor P. et al American football uniforms elicit thermoregulatory failure during a heat tolerance test. Temperature 2021; published online
- 5 Nye NS, O’Connor FG. Exertional heat illness considerations in the military. In: Adams WM, Jardine JF. Exertional Heat Illness: A Clinical and Evidence-Based Guide. Cham: Springer International Publishing; 2020: 181-209
- 6 Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008; 88: 1379-1406
- 7 Steensberg A, Febbraio MA, Osada T. et al Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol 2001; 537: 633-639
- 8 Welc SS, Clanton TL. The regulation of interleukin-6 implicates skeletal muscle as an integrative stress sensor and endocrine organ. Exp Physiol 2013; 98: 359-371
- 9 Griffin GE, Goldspink G. The increase in skeletal muscle mass in male and female mice. Anat Rec 1973; 177: 465-469
- 10 Dave HD, Shook M, Varacallo M. Anatomy, Skeletal Muscle. StatPearls. Treasure Island (FL): StatPearls Publishing; 2020; Online http://www.ncbi.nlm.nih.gov/books/NBK537236/ last update: September 22, 2020
- 11 Capacchione JF, Muldoon SM. The relationship between exertional heat illness, exertional rhabdomyolysis, and malignant hyperthermia. Anesth Analg 2009; 109: 1065.
- 12 Deuster PA, Contreras-Sesvold CL, O’Connor FG. et al Genetic polymorphisms associated with exertional rhabdomyolysis. Eur J Appl Physiol 2013; 113: 1997-2004
- 13 Landau ME, Kenney K, Deuster P. et al Exertional rhabdomyolysis: a clinical review with a focus on genetic influences. J Clin Neuromuscul Dis 2012; 13: 122-136
- 14 Iizuka K, Machida T, Hirafuji M. Skeletal muscle is an endocrine organ. J Pharmacol Sci 2014; 125: 125-131
- 15 Laitano O, Robinson GP, Garcia CK. et al Skeletal muscle interleukin-6 contributes to the innate immune response in septic mice. Shock 2020; Online ahead of print
- 16 Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med 2020; 12: e1462
- 17 González-Alonso J, Quistorff B, Krustrup P. et al Heat production in human skeletal muscle at the onset of intense dynamic exercise. J Physiol 2000; 524: 603-615
- 18 Evans CL, Hill AV. The relation of length to tension development and heat production on contraction in muscle. J Physiol 1914; 49: 10-16
- 19 Hill AV. The heat produced in contracture and muscular tone. J Physiol 1910; 40: 389-403
- 20 Hill AV. The position occupied by the production of heat, in the chain of processes constituting a muscular contraction. J Physiol 1911; 42: 1-43
- 21 Hill AV, Hartree W. The four phases of heat-production of muscle. J Physiol 1920; 54: 84-128
- 22 Bolstad G, Ersland A. Energy metabolism in different human skeletal muscles during voluntary isometric contractions. Eur J Appl Physiol 1978; 38: 171-179
- 23 Epstein Y, Moran DS, Shapiro Y. et al Exertional heat stroke: A case series. Med Sci Sports Exerc 1999; 31: 224-228
- 24 Malamud N, Haymaker W, Custer RP. Heat stroke; a clinico-pathologic study of 125 fatal cases. Mil Surg 1946; 99: 397-449
- 25 Shibolet S, Coll R, Gilat T. et al Heatstroke: Its clinical picture and mechanism in 36 cases. Q J Med 1967; 36: 525-548
- 26 Carter R, Cheuvront SN, Sawka MN. A case report of idiosyncratic hyperthermia and review of U.S. Army heat stroke hospitalizations. J Sport Rehabil 2007; 16: 238-243
- 27 Burke RE, Levine DN, Tsairis P. et al Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 1973; 234: 723-748
- 28 Talmadge RJ, Roy RR. Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms. J Appl Physiol (1985) 1993; 75: 2337-2340
- 29 Fenn WO. A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol 1923; 58: 175-203
- 30 Imaizumi M, Tanokura M. Heat capacity and entropy changes of troponin C from bullfrog skeletal muscle induced by calcium binding. Eur J Biochem 1990; 192: 275-281
- 31 Bennett AF. Thermal dependence of muscle function. Am J Physiol 1984; 247: R217-R229
- 32 Moran AL, Warren GL, Lowe DA. Soleus and EDL muscle contractility across the lifespan of female C57BL/6 mice. Exp Gerontol 2005; 40: 966-975
- 33 Sawano S, Komiya Y, Ichitsubo R. et al A one-step immunostaining method to visualize rodent muscle fiber type within a single specimen. PLoS One 2016; 11: e0166080.
- 34 Curtin NA, Woledge RC, West TG. et al Energy turnover in mammalian skeletal muscle in contractions mimicking locomotion: effects of stimulus pattern on work, impulse and energetic cost and efficiency. J Exp Biol 2019; 222: jeb203877
- 35 van der Poel C, Stephenson DG. Effects of elevated physiological temperatures on sarcoplasmic reticulum function in mechanically skinned muscle fibers of the rat. Am J Physiol Cell Physiol 2007; 293: C133-C141
- 36 Whitehead NP, Yeung EW, Allen DG. Muscle damage in mdx (dystrophic) mice: role of calcium and reactive oxygen species. Clin Exp Pharmacol Physiol 2006; 33: 657-662
- 37 Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008; 88: 1243-1276
- 38 Hyatt HW, Powers SK. The role of calpains in skeletal muscle remodeling with exercise and inactivity-induced atrophy. Int J Sports Med 2020; 41: 994-1008
- 39 Laitano O, Murray KO, Leon LR. Overlapping mechanisms of exertional heat stroke and malignant hyperthermia: evidence vs. conjecture. Sports Med 2020; 50: 1581-1592
- 40 Yarmolenko PS, Moon EJ, Landon C. et al Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia 2011; 27: 320-343
- 41 Oliver SR, Wright VP, Parinandi N. et al Thermal tolerance of contractile function in oxidative skeletal muscle: No protection by antioxidants and reduced tolerance with eicosanoid enzyme inhibition. Am J Physiol Regul Integr Comp Physiol 2008; 295: R1695-R1705
- 42 Welc SS, Phillips NA, Oca-Cossio J. et al Hyperthermia increases interleukin-6 in mouse skeletal muscle. Am J Physiol Cell Physiol 2012; 303: C455-C466
- 43 Laitano O, Sheikh LH, Mattingly AJ. et al Osmolality selectively offsets the impact of hyperthermia on mouse skeletal muscle in vitro. Front Physiol 2018; 9: 1496.
- 44 Racinais S, Cocking S, Périard JD. Sports and environmental temperature: From warming-up to heating-up. Temperature 2017; 4: 227-257
- 45 Racinais S, Moussay S, Nichols D. et al Core temperature up to 41.5°C during the UCI Road Cycling World Championships in the heat. Br J Sports Med 2019; 53: 426-429
- 46 Parkin JM, Carey MF, Zhao S. et al Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. J Appl Physiol (1985) 1999; 86: 902-908
- 47 van der Poel C, Stephenson DG. Reversible changes in Ca(2+)-activation properties of rat skeletal muscle exposed to elevated physiological temperatures. J Physiol 2002; 544: 765-776
- 48 King MA, Clanton TL, Laitano O. Hyperthermia, dehydration, and osmotic stress: unconventional sources of exercise-induced reactive oxygen species. Am J Physiol Regul Integr Comp Physiol 2016; 310: R105-R114
- 49 Markov DI, Zubov EO, Nikolaeva OP. et al Thermal denaturation and aggregation of myosin subfragment 1 isoforms with different essential light chains. Int J Mol Sci 2010; 11: 4194-4226
- 50 Ritchie KP, Keller BM, Syed KM. et al Hyperthermia (heat shock)-induced protein denaturation in liver, muscle and lens tissue as determined by differential scanning calorimetry. Int J Hyperthermia 1994; 10: 605-618
- 51 Salo DC, Donovan CM, Davies KJ. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic Biol Med 1991; 11: 239-246
- 52 Dubey A, Prajapati KS, Swamy M. et al Heat shock proteins: a therapeutic target worth to consider. Vet World 2015; 8: 46-51
- 53 de Bittencourt PIH, Newsholme P. A novel l-arginine/l-glutamine coupling hypothesis: Implications for type 1 diabetes. In: Liu CP. Type 1 Diabetes - Complications, Pathogenesis, and Alternative Treatments. London: Intech Open Limited; 2011.
- 54 Henstridge DC, Febbraio MA, Hargreaves M. Heat shock proteins and exercise adaptations. Our knowledge thus far and the road still ahead. J Appl Physiol (1985) 2015; 120: 683-691
- 55 Dehbi M, Baturcam E, Eldali A. et al Hsp-72, a candidate prognostic indicator of heatstroke. Cell Stress Chaperones 2010; 15: 593-603
- 56 de Lemos Muller CH, de Matos JR, Grigolo GB. et al Exercise training for the elderly: inflammaging and the central role for HSP70. J Sci Sport Exerc 2019; 1: 97-115
- 57 Lee EC-H, Muñoz CX, McDermott BP. et al Extracellular and cellular Hsp72 differ as biomarkers in acute exercise/environmental stress and recovery. Scand J Med Sci Sports 2017; 27: 66-74
- 58 Rubio E, Valenciano AI, Segundo C. et al Programmed cell death in the neurulating embryo is prevented by the chaperone heat shock cognate 70. Eur J Neurosci 2002; 15: 1646-1654
- 59 Rosendal L, Søgaard K, Kjær M. et al Increase in interstitial interleukin-6 of human skeletal muscle with repetitive low-force exercise. J Appl Physiol (1985) 2005; 98: 477-481
- 60 Welc SS, Morse DA, Mattingly AJ. et al The impact of hyperthermia on receptor-mediated interleukin-6 regulation in mouse skeletal muscle. PLoS One 2016; 11: e0148927.
- 61 Mattingly AJ, Laitano O, Clanton TL. Epinephrine stimulates CXCL1 IL-1α, IL-6 secretion in isolated mouse limb muscle. Physiol Rep 2017; 5: e13519
- 62 Iwaniec J, Robinson GP, Garcia CK. et al Acute phase response to exertional heat stroke in mice. Exp Physiol 2021; 106: 222-232
- 63 Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol 2014; 5 461
- 64 Bouchama A, Al-Sedairy S, Siddiqui S. et al Elevated pyrogenic cytokines in heatstroke. Chest 1993; 104: 1498-1502
- 65 Hammami MM, Bouchama A, Al-Sedairy S. et al Concentrations of soluble tumor necrosis factor and interleukin-6 receptors in heatstroke and heatstress. Crit Care Med 1997; 25: 1314-1319
- 66 King MA, Leon LR, Morse DA. et al Unique cytokine and chemokine responses to exertional heat stroke in mice. J Appl Physiol (1985) 2017; 122: 296-306
- 67 Leon LR. Heat stroke and cytokines. In: Sharma HS. Progress in Brain Research. Elsevier; 2007: 481-524
- 68 Graber CD, Reinhold RB, Breman JG. et al Fatal heat stroke. Circulating endotoxin and gram-negative sepsis as complications. JAMA 1971; 216: 1195-1196
- 69 Henriksson J. Microdialysis of skeletal muscle at rest. Proc Nutr Soc 1999; 58: 919-923
- 70 Chazaud B. Inflammation and skeletal muscle regeneration: leave it to the macrophages!. Trends Immunol 2020; 41: 481-492
- 71 Shibaguchi T, Sugiura T, Fujitsu T. et al Effects of icing or heat stress on the induction of fibrosis and/or regeneration of injured rat soleus muscle. J Physiol Sci 2016; 66: 345-357
- 72 Gonzalez-Alonso J, Calbet JAL, Boushel R. et al Blood temperature and perfusion to exercising and non-exercising human limbs. Exp Physiol 2015; 100: 1118-1131
- 73 Barnes MA, Carson MJ, Nair MG. Non-traditional cytokines: how catecholamines and adipokines influence macrophages in immunity, metabolism and the central nervous system. Cytokine 2015; 72: 210-219
- 74 Phillips NA, Welc SS, Wallet SM. et al Protection of intestinal injury during heat stroke in mice by interleukin-6 pretreatment. J Physiol 2015; 593: 739-752 discussion 753
- 75 Linke RP, Meinel A, Chalcroft JP. et al Serum amyloid A (SAA) treatment enhances the recovery of aggravated polymicrobial sepsis in mice, whereas blocking SAA’s invariant peptide results in early death. Amyloid 2017; 24: 149-150
- 76 De Buck M, Gouwy M, Ming Wang J. et al Structure and expression of different serum amyloid a (SAA) variants and their concentration-dependent functions during host insults. Curr Med Chem 2016; 23: 1725-1755
- 77 Leon LR, Dineen S, Blaha MD. et al Attenuated thermoregulatory, metabolic, and liver acute phase protein response to heat stroke in TNF receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 2013; 305: R1421-R1432
- 78 Bonetto A, Aydogdu T, Kunzevitzky N. et al STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One 2011; 6: e22538
- 79 Langhans C, Weber-Carstens S, Schmidt F. et al Inflammation-induced acute phase response in skeletal muscle and critical illness myopathy. PLoS One 2014; 9: e92048
- 80 Lorenzo S, Halliwill JR, Sawka MN. et al Heat acclimation improves exercise performance. J Appl Physiol (1985) 2010; 109: 1140-1147
- 81 Young AJ, Sawka MN, Levine L. et al Skeletal muscle metabolism during exercise is influenced by heat acclimation. J Appl Physiol (1985) 1985; 59: 1929-1935
- 82 Racinais S, Wilson MG, Périard JD. Passive heat acclimation improves skeletal muscle contractility in humans. Am J Physiol Regul Integr Comp Physiol 2016; 312: R101-R107
- 83 Kuhlenhoelter AM, Kim K, Neff D. et al Heat therapy promotes the expression of angiogenic regulators in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2016; 311: R377-R391
- 84 Horowitz M. Epigenetics and cytoprotection with heat acclimation. J Appl Physiol (1985) 2015; 120: 702-710
- 85 Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817