Subscribe to RSS
DOI: 10.1055/a-1401-4486
Intermolecular C–H Amidation of Alkenes with Carbon Monoxide and Azides via Tandem Palladium Catalysis
We acknowledge financial support from NSFC (21772208, 22001226, 21633013), Natural Science Foundation of Jiangsu Province (BK20201183), Key Research Program of Frontier Sciences of CAS (QYZDJSSW-SLH051), The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB150016), and Funding for School-Level Research Projects of Yancheng Institute of Technology (xjr2019032).
Abstract
An atom- and step-economic intermolecular multi-component palladium-catalyzed C–H amidation of alkenes with carbon monoxide and organic azides has been developed for the synthesis of alkenyl amides. The reaction proceeds efficiently without an ortho-directing group on the alkene substrates. Nontoxic dinitrogen is generated as the sole by-product. Computational studies and control experiments have revealed that the reaction takes place via an unexpected mechanism by tandem palladium catalysis.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1401-4486.
- Supporting Information
Publication History
Received: 07 February 2021
Accepted after revision: 26 February 2021
Accepted Manuscript online:
26 February 2021
Article published online:
29 March 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ananthanarayanan VS, Tetreault S, Saint-Jean A. J. Med. Chem. 1993; 36: 1324
- 1b Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS. Chem. Rev. 2001; 101: 3893
- 1c Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
- 1d Pattabiraman VR, Bode JW. Nature 2011; 480: 471
- 1e Lundberg H, Tinnis F, Selander N, Adolfsson H. Chem. Soc. Rev. 2014; 43: 2714
- 1f de Figueiredo RM, Suppo JS, Campagne JM. Chem. Rev. 2016; 116: 12029
- 1g Wang X. Nat. Catal. 2019; 2: 98
- 2a Orjala J, Gerwick WH. J. Nat. Prod. 1996; 59: 427
- 2b Hosoya T, Kato Y, Yamamoto Y, Hayashi M, Komiyama K, Ishibashi M. Heterocycles 2006; 69: 463
- 2c Wang H.-Y, Wang R.-X, Zhao Y.-X, Liu K, Wang F.-L, Sun J.-Y. Chem. Biodivers. 2015; 12: 1256
- 2d Yuan Y.-H, Han X, Zhu F.-P, Tian J.-M, Zhang F.-M, Zhang X.-M, Tu Y.-Q, Wang S.-H, Guo X. Nat. Commun. 2019; 10: 3394
- 3a Dander JE, Garg NK. ACS Catal. 2017; 7: 1413
- 3b Liu C, Szostak M. Chem. Eur. J. 2017; 23: 7157
- 3c Liu H, Song S, Wang C.-Q, Feng C, Loh T.-P. ChemSusChem 2017; 10: 58
- 3d Shi S, Nolan SP, Szostak M. Acc. Chem. Res. 2018; 51: 2589
- 3e Li G, Szostak M. Chem. Rec. 2020; 20: 649
- 4a Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
- 4b Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
- 4c El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
- 4d Dunetz JR, Magano J, Weisenburger GA. Org. Process Res. Dev. 2016; 20: 140
- 4e Li G, Ma S, Szostak M. Trends Chem. 2020; 2: 914
- 5 Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JJ. L, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
- 6a Ishihara K, Ohara S, Yamamoto H. J. Org. Chem. 1996; 61: 4196
- 6b Al-Zoubi RM, Marion O, Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
- 6c Ishihara K, Lu Y. Chem. Sci. 2016; 7: 1276
- 6d Noda H, Furutachi M, Asada Y, Shibasaki M, Kumagai N. Nat. Chem. 2017; 9: 571
- 6e Wang K, Lu Y, Ishihara K. Chem. Commun. 2018; 54: 5410
- 7a Imada Y, Alper H. J. Org. Chem. 1996; 61: 6766
- 7b Imada Y, Vasapollo G, Alper H. J. Org. Chem. 1996; 61: 7982
- 7c Uenoyama Y, Fukuyama T, Nobuta O, Matsubara H, Ryu I. Angew. Chem. Int. Ed. 2005; 44: 1075
- 7d Li Y, Alper H, Yu Z. Org. Lett. 2006; 8: 5199
- 7e Driller KM, Prateeptongkum S, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2011; 50: 537
- 7f Gao B, Huang H. Org. Lett. 2017; 19: 6260
- 7g Sha F, Alper H. ACS Catal. 2017; 7: 2220
- 8a Modern Carbonylation Methods . Kollar L. Wiley-VCH; Weinheim: 2008
- 8b Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C–X Bonds. Beller M, Wu X.-F. Springer; Amsterdam: 2013
- 9a Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 5
- 9b Eriksson J, Aaberg O, Laangstroem B. Eur. J. Org. Chem. 2007; 455
- 9c Lagerlund O, Mantel ML. H, Larhed M. Tetrahedron 2009; 65: 7646
- 9d Chen B, Wu X.-F. J. Catal. 2020; 383: 160
- 10a Ferguson J, Zeng F, Alwis N, Alper H. Org. Lett. 2013; 15: 1998
- 10b Grigorjeva L, Daugulis O. Org. Lett. 2014; 16: 4688
- 10c Li W, Liu C, Zhang H, Ye K, Zhang G, Zhang W, Duan Z, You S, Lei A. Angew. Chem. Int. Ed. 2014; 53: 2443
- 10d Calleja J, Pla D, Gorman TW, Domingo V, Haffemayer B, Gaunt MJ. Nat. Chem. 2015; 7: 1009
- 10e Wang C, Zhang L, Chen C, Han J, Yao Y, Zhao Y. Chem. Sci. 2015; 6: 4610
- 10f Zhu J, Gao B, Huang H. Org. Biomol. Chem. 2017; 15: 2910
- 10g Liu S, Wang H, Dai X, Shi F. Green Chem. 2018; 20: 3457
- 10h Zeng L, Li H, Tang S, Gao X, Deng Y, Zhang G, Pao C.-W, Chen J.-L, Lee J.-F, Lei A. ACS Catal. 2018; 8: 5448
- 11a Fang X, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2013; 52: 14089
- 11b Liu H, Yan N, Dyson PJ. Chem. Commun. 2014; 50: 7848
- 11c Liu J, Li H, Spannenberg A, Franke R, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2016; 55: 13544
- 11d Zhou X, Zhang G, Gao B, Huang H. Org. Lett. 2018; 20: 2208
- 12a Shi R, Zhang H, Lu L, Gan P, Sha Y, Zhang H, Liu Q, Beller M, Lei A. Chem. Commun. 2015; 51: 3247
- 12b Peng J.-B, Geng H.-Q, Li D, Qi X, Ying J, Wu X.-F. Org. Lett. 2018; 20: 4988
- 13a Shen M, Lesli BE, Driver TG. Angew. Chem. Int. Ed. 2008; 47: 5056
- 13b Dequirez G, Pons V, Dauban P. Angew. Chem. Int. Ed. 2012; 51: 7384
- 13c Nguyen Q, Sun K, Driver TG. J. Am. Chem. Soc. 2012; 134: 7262
- 13d Olivos Suarez AI, Lyaskovskyy V, Reek JN, van der Vlugt JI, de Bruin B. Angew. Chem. Int. Ed. 2013; 52: 12510
- 13e Intrieri D, Zardi P, Caselli A, Gallo E. Chem. Commun. 2014; 50: 11440
- 13f Lu H, Li C, Jiang H, Lizardi CL, Zhang XP. Angew. Chem. Int. Ed. 2014; 53: 7028
- 13g Goswami M, Lyaskovskyy V, Domingos SR, Buma WJ, Woutersen S, Troeppner O, Ivanovic-Burmazovic I, Lu H, Cui X, Zhang XP, Reijerse EJ, DeBeer S, van Schooneveld MM, Pfaff FF, Ray K, de Bruin B. J. Am. Chem. Soc. 2015; 137: 5468
- 13h Kuijpers PF, van der Vlugt JI, Schneider S, de Bruin B. Chem. Eur. J. 2017; 23: 13819
- 13i Li C, Lang K, Lu H, Hu Y, Cui X, Wojtas L, Zhang XP. Angew. Chem. Int. Ed. 2018; 57: 16837
- 13j Shimbayashi T, Sasakura K, Eguchi A, Okamoto K, Ohe K. Chem. Eur. J. 2019; 25: 3156
- 14a Gu Z.-Y, Li J.-H, Wang S.-Y, Ji S.-J. Chem. Commun. 2017; 53: 11173
- 14b Gu Z.-Y, Liu Y, Wang F, Bao X, Wang S.-Y, Ji S.-J. ACS Catal. 2017; 7: 3893
- 14c Zhang Z, Huang B, Qiao G, Zhu L, Xiao F, Chen F, Fu B, Zhang Z. Angew. Chem. Int. Ed. 2017; 56: 4320
- 14d Gu Z.-Y, Zhang R, Wang S.-Y, Ji S.-J. Chin. J. Chem. 2018; 36: 1011
- 14e Lang K, Torker S, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2019; 141: 12388
- 15a Bennett RP, Hardy WB. J. Am. Chem. Soc. 1968; 90: 3295
- 15b La Monica G, Cenini S. J. Organomet. Chem. 1981; 216: C35
- 15c Ren L, Jiao N. Chem. Commun. 2014; 50: 3706
- 15d Zhang Z, Xiao F, Huang B, Hu J, Fu B, Zhang Z. Org. Lett. 2016; 18: 908
- 15e Zhao J, Li Z, Song S, Wang M.-A, Fu B, Zhang Z. Angew. Chem. Int. Ed. 2016; 55: 5545
- 15f Zhao J, Li Z, Yan S, Xu S, Wang MA, Fu B, Zhang Z. Org. Lett. 2016; 18: 1736
- 15g Chow SY, Odell LR. J. Org. Chem. 2017; 82: 2515
- 15h Li Z, Xu S, Huang B, Yuan C, Chang W, Fu B, Jiao L, Wang P, Zhang Z. J. Org. Chem. 2019; 84: 9497
- 15i Schembri LS, Eriksson J, Odell LR. J. Org. Chem. 2019; 84: 6970
- 15j Feng J, Zhang Z, Li X, Zhang Z. Synlett 2020; 31: 1040
- 15k Zhang Y, Yin Z, Wu X.-F. Org. Lett. 2019; 21: 3242
- 15l Chen B, Wu X.-F. J. Catal. 2020; 383: 160
- 15m Yuan Y, Chen B, Zhang Y, Wu X.-F. J. Org. Chem. 2020; 85: 5733
- 16a Yuan S.-W, Han H, Li Y.-L, Wu X, Bao X, Gu Z.-Y, Xia J.-B. Angew. Chem. Int. Ed. 2019; 58: 8887
- 16b Li Y.-L, Gu Z.-Y, Xia J.-B. Synlett 2021; 32: 7
- 17 McGrath NA, Brichacek M, Njardarson JT. J. Chem. Educ. 2010; 87: 1348
- 18a D’Auria M, Racioppi R, Viggiani L, Zanirato P. Eur. J. Org. Chem. 2009; 932
- 18b Ferrini S, Cini E, Taddei M. Synlett 2013; 24: 491
- 19a Sundberg RJ. Indoles . Academic Press; San Diego: 1996
- 19b Inman M, Moody CJ. Chem. Sci. 2013; 4: 29
- 19c Patil SA, Patil R, Miller DD. Curr. Med. Chem. 2011; 18: 615
- 20 Kulkarni JS, Metha AA, Santani DD, Goyal RK. Pharm. Res. 2002; 46: 101
- 21a Effenberger F, Gleiter R. Chem. Ber. 1964; 97: 1576
- 21b Chmielewski M, Kaluza Z. J. Org. Chem. 1986; 51: 2395
- 21c Cossio FP, Roa G, Lecea B, Ugalde JM. J. Am. Chem. Soc. 1995; 117: 12306
- 21d Chmielewski M, Kałuża Z, Furman B. Chem. Commun. 1996; 2689
-
22 The transition state leading to the formation of β-lactam intermediate is located as TS3c′, which is much higher in energy than the pathway via TS3a′ (Figure 1).
-
23 After the formation of the isocyanate intermediate, a possible Pd(II)-catalyzed pathway to afford the final product is also considered (Figure S2 in Supporting Information). The main mechanistic difference for Pd(II)-catalyzed pathway is that the acetate ligand could serve as a proton shuttle to assist the H-migration to yield the final product.