RSS-Feed abonnieren
DOI: 10.1055/a-1401-4486
Intermolecular C–H Amidation of Alkenes with Carbon Monoxide and Azides via Tandem Palladium Catalysis
Autor*innen
We acknowledge financial support from NSFC (21772208, 22001226, 21633013), Natural Science Foundation of Jiangsu Province (BK20201183), Key Research Program of Frontier Sciences of CAS (QYZDJSSW-SLH051), The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB150016), and Funding for School-Level Research Projects of Yancheng Institute of Technology (xjr2019032).

Abstract
An atom- and step-economic intermolecular multi-component palladium-catalyzed C–H amidation of alkenes with carbon monoxide and organic azides has been developed for the synthesis of alkenyl amides. The reaction proceeds efficiently without an ortho-directing group on the alkene substrates. Nontoxic dinitrogen is generated as the sole by-product. Computational studies and control experiments have revealed that the reaction takes place via an unexpected mechanism by tandem palladium catalysis.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1401-4486.
- Supporting Information (PDF) (opens in new window)
Publikationsverlauf
Eingereicht: 07. Februar 2021
Angenommen nach Revision: 26. Februar 2021
Accepted Manuscript online:
26. Februar 2021
Artikel online veröffentlicht:
29. März 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ananthanarayanan VS, Tetreault S, Saint-Jean A. J. Med. Chem. 1993; 36: 1324
- 1b Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS. Chem. Rev. 2001; 101: 3893
- 1c Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
- 1d Pattabiraman VR, Bode JW. Nature 2011; 480: 471
- 1e Lundberg H, Tinnis F, Selander N, Adolfsson H. Chem. Soc. Rev. 2014; 43: 2714
- 1f de Figueiredo RM, Suppo JS, Campagne JM. Chem. Rev. 2016; 116: 12029
- 1g Wang X. Nat. Catal. 2019; 2: 98
- 2a Orjala J, Gerwick WH. J. Nat. Prod. 1996; 59: 427
- 2b Hosoya T, Kato Y, Yamamoto Y, Hayashi M, Komiyama K, Ishibashi M. Heterocycles 2006; 69: 463
- 2c Wang H.-Y, Wang R.-X, Zhao Y.-X, Liu K, Wang F.-L, Sun J.-Y. Chem. Biodivers. 2015; 12: 1256
- 2d Yuan Y.-H, Han X, Zhu F.-P, Tian J.-M, Zhang F.-M, Zhang X.-M, Tu Y.-Q, Wang S.-H, Guo X. Nat. Commun. 2019; 10: 3394
- 3a Dander JE, Garg NK. ACS Catal. 2017; 7: 1413
- 3b Liu C, Szostak M. Chem. Eur. J. 2017; 23: 7157
- 3c Liu H, Song S, Wang C.-Q, Feng C, Loh T.-P. ChemSusChem 2017; 10: 58
- 3d Shi S, Nolan SP, Szostak M. Acc. Chem. Res. 2018; 51: 2589
- 3e Li G, Szostak M. Chem. Rec. 2020; 20: 649
- 4a Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
- 4b Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
- 4c El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
- 4d Dunetz JR, Magano J, Weisenburger GA. Org. Process Res. Dev. 2016; 20: 140
- 4e Li G, Ma S, Szostak M. Trends Chem. 2020; 2: 914
- 5 Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JJ. L, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
- 6a Ishihara K, Ohara S, Yamamoto H. J. Org. Chem. 1996; 61: 4196
- 6b Al-Zoubi RM, Marion O, Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
- 6c Ishihara K, Lu Y. Chem. Sci. 2016; 7: 1276
- 6d Noda H, Furutachi M, Asada Y, Shibasaki M, Kumagai N. Nat. Chem. 2017; 9: 571
- 6e Wang K, Lu Y, Ishihara K. Chem. Commun. 2018; 54: 5410
- 7a Imada Y, Alper H. J. Org. Chem. 1996; 61: 6766
- 7b Imada Y, Vasapollo G, Alper H. J. Org. Chem. 1996; 61: 7982
- 7c Uenoyama Y, Fukuyama T, Nobuta O, Matsubara H, Ryu I. Angew. Chem. Int. Ed. 2005; 44: 1075
- 7d Li Y, Alper H, Yu Z. Org. Lett. 2006; 8: 5199
- 7e Driller KM, Prateeptongkum S, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2011; 50: 537
- 7f Gao B, Huang H. Org. Lett. 2017; 19: 6260
- 7g Sha F, Alper H. ACS Catal. 2017; 7: 2220
- 8a Modern Carbonylation Methods . Kollar L. Wiley-VCH; Weinheim: 2008
- 8b Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C–X Bonds. Beller M, Wu X.-F. Springer; Amsterdam: 2013
- 9a Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 5
- 9b Eriksson J, Aaberg O, Laangstroem B. Eur. J. Org. Chem. 2007; 455
- 9c Lagerlund O, Mantel ML. H, Larhed M. Tetrahedron 2009; 65: 7646
- 9d Chen B, Wu X.-F. J. Catal. 2020; 383: 160
- 10a Ferguson J, Zeng F, Alwis N, Alper H. Org. Lett. 2013; 15: 1998
- 10b Grigorjeva L, Daugulis O. Org. Lett. 2014; 16: 4688
- 10c Li W, Liu C, Zhang H, Ye K, Zhang G, Zhang W, Duan Z, You S, Lei A. Angew. Chem. Int. Ed. 2014; 53: 2443
- 10d Calleja J, Pla D, Gorman TW, Domingo V, Haffemayer B, Gaunt MJ. Nat. Chem. 2015; 7: 1009
- 10e Wang C, Zhang L, Chen C, Han J, Yao Y, Zhao Y. Chem. Sci. 2015; 6: 4610
- 10f Zhu J, Gao B, Huang H. Org. Biomol. Chem. 2017; 15: 2910
- 10g Liu S, Wang H, Dai X, Shi F. Green Chem. 2018; 20: 3457
- 10h Zeng L, Li H, Tang S, Gao X, Deng Y, Zhang G, Pao C.-W, Chen J.-L, Lee J.-F, Lei A. ACS Catal. 2018; 8: 5448
- 11a Fang X, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2013; 52: 14089
- 11b Liu H, Yan N, Dyson PJ. Chem. Commun. 2014; 50: 7848
- 11c Liu J, Li H, Spannenberg A, Franke R, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2016; 55: 13544
- 11d Zhou X, Zhang G, Gao B, Huang H. Org. Lett. 2018; 20: 2208
- 12a Shi R, Zhang H, Lu L, Gan P, Sha Y, Zhang H, Liu Q, Beller M, Lei A. Chem. Commun. 2015; 51: 3247
- 12b Peng J.-B, Geng H.-Q, Li D, Qi X, Ying J, Wu X.-F. Org. Lett. 2018; 20: 4988
- 13a Shen M, Lesli BE, Driver TG. Angew. Chem. Int. Ed. 2008; 47: 5056
- 13b Dequirez G, Pons V, Dauban P. Angew. Chem. Int. Ed. 2012; 51: 7384
- 13c Nguyen Q, Sun K, Driver TG. J. Am. Chem. Soc. 2012; 134: 7262
- 13d Olivos Suarez AI, Lyaskovskyy V, Reek JN, van der Vlugt JI, de Bruin B. Angew. Chem. Int. Ed. 2013; 52: 12510
- 13e Intrieri D, Zardi P, Caselli A, Gallo E. Chem. Commun. 2014; 50: 11440
- 13f Lu H, Li C, Jiang H, Lizardi CL, Zhang XP. Angew. Chem. Int. Ed. 2014; 53: 7028
- 13g Goswami M, Lyaskovskyy V, Domingos SR, Buma WJ, Woutersen S, Troeppner O, Ivanovic-Burmazovic I, Lu H, Cui X, Zhang XP, Reijerse EJ, DeBeer S, van Schooneveld MM, Pfaff FF, Ray K, de Bruin B. J. Am. Chem. Soc. 2015; 137: 5468
- 13h Kuijpers PF, van der Vlugt JI, Schneider S, de Bruin B. Chem. Eur. J. 2017; 23: 13819
- 13i Li C, Lang K, Lu H, Hu Y, Cui X, Wojtas L, Zhang XP. Angew. Chem. Int. Ed. 2018; 57: 16837
- 13j Shimbayashi T, Sasakura K, Eguchi A, Okamoto K, Ohe K. Chem. Eur. J. 2019; 25: 3156
- 14a Gu Z.-Y, Li J.-H, Wang S.-Y, Ji S.-J. Chem. Commun. 2017; 53: 11173
- 14b Gu Z.-Y, Liu Y, Wang F, Bao X, Wang S.-Y, Ji S.-J. ACS Catal. 2017; 7: 3893
- 14c Zhang Z, Huang B, Qiao G, Zhu L, Xiao F, Chen F, Fu B, Zhang Z. Angew. Chem. Int. Ed. 2017; 56: 4320
- 14d Gu Z.-Y, Zhang R, Wang S.-Y, Ji S.-J. Chin. J. Chem. 2018; 36: 1011
- 14e Lang K, Torker S, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2019; 141: 12388
- 15a Bennett RP, Hardy WB. J. Am. Chem. Soc. 1968; 90: 3295
- 15b La Monica G, Cenini S. J. Organomet. Chem. 1981; 216: C35
- 15c Ren L, Jiao N. Chem. Commun. 2014; 50: 3706
- 15d Zhang Z, Xiao F, Huang B, Hu J, Fu B, Zhang Z. Org. Lett. 2016; 18: 908
- 15e Zhao J, Li Z, Song S, Wang M.-A, Fu B, Zhang Z. Angew. Chem. Int. Ed. 2016; 55: 5545
- 15f Zhao J, Li Z, Yan S, Xu S, Wang MA, Fu B, Zhang Z. Org. Lett. 2016; 18: 1736
- 15g Chow SY, Odell LR. J. Org. Chem. 2017; 82: 2515
- 15h Li Z, Xu S, Huang B, Yuan C, Chang W, Fu B, Jiao L, Wang P, Zhang Z. J. Org. Chem. 2019; 84: 9497
- 15i Schembri LS, Eriksson J, Odell LR. J. Org. Chem. 2019; 84: 6970
- 15j Feng J, Zhang Z, Li X, Zhang Z. Synlett 2020; 31: 1040
- 15k Zhang Y, Yin Z, Wu X.-F. Org. Lett. 2019; 21: 3242
- 15l Chen B, Wu X.-F. J. Catal. 2020; 383: 160
- 15m Yuan Y, Chen B, Zhang Y, Wu X.-F. J. Org. Chem. 2020; 85: 5733
- 16a Yuan S.-W, Han H, Li Y.-L, Wu X, Bao X, Gu Z.-Y, Xia J.-B. Angew. Chem. Int. Ed. 2019; 58: 8887
- 16b Li Y.-L, Gu Z.-Y, Xia J.-B. Synlett 2021; 32: 7
- 17 McGrath NA, Brichacek M, Njardarson JT. J. Chem. Educ. 2010; 87: 1348
- 18a D’Auria M, Racioppi R, Viggiani L, Zanirato P. Eur. J. Org. Chem. 2009; 932
- 18b Ferrini S, Cini E, Taddei M. Synlett 2013; 24: 491
- 19a Sundberg RJ. Indoles . Academic Press; San Diego: 1996
- 19b Inman M, Moody CJ. Chem. Sci. 2013; 4: 29
- 19c Patil SA, Patil R, Miller DD. Curr. Med. Chem. 2011; 18: 615
- 20 Kulkarni JS, Metha AA, Santani DD, Goyal RK. Pharm. Res. 2002; 46: 101
- 21a Effenberger F, Gleiter R. Chem. Ber. 1964; 97: 1576
- 21b Chmielewski M, Kaluza Z. J. Org. Chem. 1986; 51: 2395
- 21c Cossio FP, Roa G, Lecea B, Ugalde JM. J. Am. Chem. Soc. 1995; 117: 12306
- 21d Chmielewski M, Kałuża Z, Furman B. Chem. Commun. 1996; 2689
- 22 The transition state leading to the formation of β-lactam intermediate is located
as TS3c′, which is much higher in energy than the pathway via TS3a′ (Figure 1).
- 23 After the formation of the isocyanate intermediate, a possible Pd(II)-catalyzed pathway
to afford the final product is also considered (Figure S2 in Supporting Information).
The main mechanistic difference for Pd(II)-catalyzed pathway is that the acetate ligand
could serve as a proton shuttle to assist the H-migration to yield the final product.