Thromb Haemost 2021; 121(11): 1541-1553
DOI: 10.1055/a-1414-4840
Atherosclerosis and Ischaemic Disease

Somatic Genetic Mosaicism in the Apolipoprotein E-null Mouse Aorta

María del Pilar Valencia-Morales
1   Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
2   Department of Developmental Genetics and Molecular Physiology, “Unidad Universitaria de Secuenciación Masiva y Bioinformática”, Biotechnology Institute, UNAM, Cuernavaca, Mexico
,
Alejandro Sanchez-Flores
3   “Unidad Universitaria de Secuenciación Masiva y Bioinformática”, Biotechnology Institute, UNAM, Cuernavaca, Mexico
,
Dannia Colín-Castelán
4   Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
,
Yolanda Alvarado-Caudillo
4   Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
,
Nicolás Fragoso-Bargas
1   Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
,
Gladys López-González
5   Bachelor’s Degree in Nutrition Programme, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
,
Tania Peña-López
4   Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
,
Magda Ramírez-Nava
5   Bachelor’s Degree in Nutrition Programme, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
,
Carmen de la Rocha
1   Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
,
Dalia Rodríguez-Ríos
1   Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
,
Gertrud Lund
1   Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
,
Silvio Zaina
4   Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
› Author Affiliations
Funding This work was funded by Mexican National Council for Science and Technology (CONACyT) “Atención a Problemas Nacionales” Programme [2015-01-584] and University of Guanajuato Directorate for Research and Postgraduate Programs (DAIP) “2014 Proyectos Interdisciplinarios” [2014/420].

Abstract

In addition to genetic and epigenetic inheritance, somatic variation may contribute to cardiovascular disease (CVD) risk. CVD-associated somatic mutations have been reported in human clonal hematopoiesis, but evidence in the atheroma is lacking. To probe for somatic variation in atherosclerosis, we sought single-nucleotide private variants (PVs) in whole-exome sequencing (WES) data of aorta, liver, and skeletal muscle of two C57BL/6J coisogenic male ApoE null/wild-type (WT) sibling pairs, and RNA-seq data of one of the two pairs. Relative to the C57BL/6 reference genome, we identified 9 and 11 ApoE null aorta- and liver-specific PVs that were shared by all WES and RNA-seq datasets. Corresponding PVs in WT sibling aorta and liver were 1 and 0, respectively, and not overlapping with ApoE null PVs. Pyrosequencing analysis of 4 representative PVs in 17 ApoE null aortas and livers confirmed tissue-specific shifts toward the alternative allele, in addition to significant deviations from mendelian allele ratios. Notably, all aorta and liver PVs were present in the dbSNP database and were predominantly transition mutations within atherosclerosis-related genes. The majority of PVs were in discrete clusters approximately 3 Mb and 65 to 73 Mb away from hypermutable immunoglobin loci in chromosome 6. These features were largely shared with previously reported CVD-associated somatic mutations in human clonal hematopoiesis. The observation that SNPs exhibit tissue-specific somatic DNA mosaicism in ApoE null mice is potentially relevant for genetic association study design. The proximity of PVs to hypermutable loci suggests testable mechanistic hypotheses.



Publication History

Received: 07 December 2020

Accepted: 01 March 2021

Accepted Manuscript online:
07 March 2021

Article published online:
14 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Stylianou IM, Bauer RC, Reilly MP, Rader DJ. Genetic basis of atherosclerosis: insights from mice and humans. Circ Res 2012; 110 (02) 337-355
  • 2 Roberts R. Genetics of coronary artery disease. Circ Res 2014; 114 (12) 1890-1903
  • 3 McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res 2016; 118 (04) 564-578
  • 4 Björkegren JLM, Kovacic JC, Dudley JT, Schadt EE. Genome-wide significant loci: how important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. J Am Coll Cardiol 2015; 65 (08) 830-845
  • 5 Irvin MR, Aslibekyan S, Hidalgo B, Arnett D. CPT1A: the future of heart disease detection and personalized medicine?. Clin Lipidol 2014; 9 (01) 9-12
  • 6 Lai CQ, Wojczynski MK, Parnell LD. et al. Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge. J Lipid Res 2016; 57 (12) 2200-2207
  • 7 Berenblum I, Shubik P. An experimental study of the initiating state of carcinogenesis, and a re-examination of the somatic cell mutation theory of cancer. Br J Cancer 1949; 3 (01) 109-118
  • 8 Gottlieb B, Beitel LK, Alvarado C, Trifiro MA. Selection and mutation in the “new” genetics: an emerging hypothesis. Hum Genet 2010; 127 (05) 491-501
  • 9 O'Huallachain M, Karczewski KJ, Weissman SM, Urban AE, Snyder MP. Extensiv-number variation in e genetic variation in somatic human tissues. Proc Natl Acad Sci U S A 2012; 109 (44) 18018-18023
  • 10 Cai X, Evrony GD, Lehmann HS. et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 2014; 8 (05) 1280-1289
  • 11 Poduri A, Evrony GD, Cai X, Walsh CA. Somatic mutation, genomic variation, and neurological disease. Science 2013; 341: 1237758
  • 12 Møller RS, Liebmann N, Larsen LHG. et al. Parental mosaicism in epilepsies due to alleged de novo variants. Epilepsia 2019; 60 (06) e63-e66
  • 13 Handoko M, Emrick LT, Rosenfeld JA. et al; Undiagnosed Diseases Network. Recurrent mosaic MTOR c.5930C > T (p.Thr1977Ile) variant causing megalencephaly, asymmetric polymicrogyria, and cutaneous pigmentary mosaicism: case report and review of the literature. Am J Med Genet A 2019; 179 (03) 475-479
  • 14 Muyas F, Zapata L, Guigó R, Ossowski S. The rate and spectrum of mosaic mutations during embryogenesis revealed by RNA sequencing of 49 tissues. Genome Med 2020; 12 (01) 49
  • 15 Hull S, Arno G, Thomson P. et al. Somatic mosaicism of a novel IKBKG mutation in a male patient with incontinentia pigmenti. Am J Med Genet A 2015; 167 (07) 1601-1604
  • 16 Soblet J, Limaye N, Uebelhoer M, Boon LM, Vikkula M. Variable somatic TIE2 mutations in half of sporadic venous malformations. Mol Syndromol 2013; 4 (04) 179-183
  • 17 Limaye N, Boon LM, Vikkula M. From germline towards somatic mutations in the pathophysiology of vascular anomalies. Hum Mol Genet 2009; 18 (R1): R65-R74
  • 18 Fuster JJ, Zuriaga MA, Zorita V. et al. TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep 2020; 33 (04) 108326
  • 19 Jaiswal S, Natarajan P, Silver AJ. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 2017; 377 (02) 111-121
  • 20 Patel AP, Natarajan P. Completing the genetic spectrum influencing coronary artery disease: from germline to somatic variation. Cardiovasc Res 2019; 115 (05) 830-843
  • 21 Libby P, Buring JE, Badimon L. et al. Atherosclerosis. Nat Rev Dis Primers 2019; 5 (01) 56
  • 22 Sleptsov AA, Nazarenko MS, Lebedev IN. et al. Somatic genome variations in vascular tissues and peripheral blood leukocytes in patients with atherosclerosis [in Russian]. Genetika 2014; 50 (08) 986-995
  • 23 Priest JR, Gawad C, Kahlig KM. et al. Early somatic mosaicism is a rare cause of long-QT syndrome. Proc Natl Acad Sci U S A 2016; 113 (41) 11555-11560
  • 24 Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992; 258 (5081): 468-471
  • 25 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25 (14) 1754-1760
  • 26 Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907. Published online 2012
  • 27 Valencia-Morales Mdel P, Zaina S, Heyn H. et al. The DNA methylation drift of the atherosclerotic aorta increases with lesion progression. BMC Med Genomics 2015; 8: 7
  • 28 Li H, Handsaker B, Wysoker A. et al; 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25 (16) 2078-2079
  • 29 Tusnády GE, Simon I, Váradi A, Arányi T. BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res 2005; 33 (01) e9
  • 30 McLeay RC, Bailey TL. Motif enrichment analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics 2010; 11: 165
  • 31 Szilard L. On the nature of the aging process. Proc Natl Acad Sci U S A 1959; 45 (01) 30-45
  • 32 Drigo RAE, Lev-Ram V, Tyagi S. et al. Age mosaicism across multiple scales in adult tissues. Cell Metab 2019; 30 (02) 343-351
  • 33 Fairfield H, Gilbert GJ, Barter M. et al. Mutation discovery in mice by whole exome sequencing. Genome Biol 2011; 12 (09) R86
  • 34 Stocker S, Hiery M, Marriott G. Phototactic migration of Dictyostelium cells is linked to a new type of gelsolin-related protein. Mol Biol Cell 1999; 10 (01) 161-178
  • 35 Zhang R, Zhou L, Li Q, Liu J, Yao W, Wan H. Up-regulation of two actin-associated proteins prompts pulmonary artery smooth muscle cell migration under hypoxia. Am J Respir Cell Mol Biol 2009; 41 (04) 467-475
  • 36 Migeotte I, Riboldi E, Franssen J-D. et al. Identification and characterization of an endogenous chemotactic ligand specific for FPRL2. J Exp Med 2005; 201 (01) 83-93
  • 37 Gao J-L, Guillabert A, Hu J. et al. F2L, a peptide derived from heme-binding protein, chemoattracts mouse neutrophils by specifically activating Fpr2, the low-affinity N-formylpeptide receptor. J Immunol 2007; 178 (03) 1450-1456
  • 38 Devosse T, Guillabert A, D'Haene N. et al. Formyl peptide receptor-like 2 is expressed and functional in plasmacytoid dendritic cells, tissue-specific macrophage subpopulations, and eosinophils. J Immunol 2009; 182 (08) 4974-4984
  • 39 Cole JE, Park I, Ahern DJ. et al. Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc Res 2018; 114 (10) 1360-1371
  • 40 Döring Y, Zernecke A. Plasmacytoid dendritic cells in atherosclerosis. Front Physiol 2012; 3: 230
  • 41 Marx C, Novotny J, Salbeck D. et al. Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood 2019; 134 (21) 1859-1872
  • 42 van Beijnum JR, Dings RP, van der Linden E. et al. Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 2006; 108 (07) 2339-2348
  • 43 Tsusaka T, Fukuda K, Shimura C, Kato M, Shinkai Y. The fibronectin type-III (FNIII) domain of ATF7IP contributes to efficient transcriptional silencing mediated by the SETDB1 complex. Epigenetics Chromatin 2020; 13 (01) 52
  • 44 Hachiya R, Shiihashi T, Shirakawa I. et al. The H3K9 methyltransferase Setdb1 regulates TLR4-mediated inflammatory responses in macrophages. Sci Rep 2016; 6: 28845
  • 45 Xu S, Zhao L, Larsson A, Venge P. The identification of a phospholipase B precursor in human neutrophils. FEBS J 2009; 276 (01) 175-186
  • 46 Xu S, Cai L, Zhao L. et al. Tissue localization and the establishment of a sensitive immunoassay of the newly discovered human phospholipase B-precursor (PLB-P). J Immunol Methods 2010; 353 (1–2): 71-77
  • 47 Vanhaverbeke M, Vausort M, Veltman D. et al; EU-CardioRNA COST Action CA17129. Peripheral blood RNA levels of QSOX1 and PLBD1 are new independent predictors of left ventricular dysfunction after acute myocardial infarction. Circ Genom Precis Med 2019; 12 (12) e002656
  • 48 Adamski MG, Li Y, Wagner E. et al. Expression profile based gene clusters for ischemic stroke detection. Genomics 2014; 104 (03) 163-169
  • 49 Wang L, Chai Y, Li C. et al. Oxidized phospholipids are ligands for LRP6. Bone Res 2018; 6: 22
  • 50 Liu W, Mani S, Davis NR, Sarrafzadegan N, Kavathas PB, Mani A. Mutation in EGFP domain of LDL receptor-related protein 6 impairs cellular LDL clearance. Circ Res 2008; 103 (11) 1280-1288
  • 51 Tombo N, Imam Aliagan AD, Feng Y, Singh H, Bopassa JC. Cardiac ischemia/reperfusion stress reduces inner mitochondrial membrane protein (mitofilin) levels during early reperfusion. Free Radic Biol Med 2020; 158: 181-194
  • 52 Sharma P, Kumar J, Garg G. et al. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol 2008; 27 (07) 357-365
  • 53 Tourrière H, Chebli K, Zekri L. et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 2003; 160 (06) 823-831
  • 54 Plyler ZE, Hill AE, McAtee CW, Cui X, Moseley LA, Sorscher EJ. SNP formation bias in the murine genome provides evidence for parallel evolution. Genome Biol Evol 2015; 7 (09) 2506-2519
  • 55 Lu Y, Zhang L, Liao X. et al. Kruppel-like factor 15 is critical for vascular inflammation. J Clin Invest 2013; 123 (10) 4232-4241
  • 56 Harris JE, Bishop KD, Phillips NE. et al. Early growth response gene-2, a zinc-finger transcription factor, is required for full induction of clonal anergy in CD4+ T cells. J Immunol 2004; 173 (12) 7331-7338
  • 57 Lu L, Ye X, Yao Q. et al. Egr2 enhances insulin resistance via JAK2/STAT3/SOCS-1 pathway in HepG2 cells treated with palmitate. Gen Comp Endocrinol 2018; 260: 25-31
  • 58 Reddy MA, Das S, Zhuo C. et al. Regulation of vascular smooth muscle cell dysfunction under diabetic conditions by MIR-504. Arterioscler Thromb Vasc Biol 2016; 36 (05) 864-873
  • 59 Garabedian MJ, Harris CA, Jeanneteau F. Glucocorticoid receptor action in metabolic and neuronal function. F1000 Res 2017; 6: 1208
  • 60 Bick AG, Weinstock JS, Nandakumar SK. et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 2020; 586 (7831): 763-768
  • 61 Peng SL, Gerth AJ, Ranger AM, Glimcher LH. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 2001; 14 (01) 13-20
  • 62 Matsuo K, Galson DL, Zhao C. et al. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 2004; 279 (25) 26475-26480
  • 63 Gravastrand CS, Steinkjer B, Halvorsen B. et al. Cholesterol crystals induce coagulation activation through complement-dependent expression of monocytic tissue factor. J Immunol 2019; 203 (04) 853-863
  • 64 Labonté L, Coulombe P, Zago M, Bourbeau J, Baglole CJ. Alterations in the expression of the NF-κB family member RelB as a novel marker of cardiovascular outcomes during acute exacerbations of chronic obstructive pulmonary disease. PLoS One 2014; 9 (11) e112965
  • 65 Su HX, Zhou HH, Wang MY. et al. Mutations of C-reactive protein (CRP) -286 SNP, APC and p53 in colorectal cancer: implication for a CRP-Wnt crosstalk. PLoS One 2014; 9 (07) e102418
  • 66 Zhao H, Xu J, Zhao D. et al. Somatic mutation of the SNP rs11614913 and its association with increased MIR 196A2 expression in breast cancer. DNA Cell Biol 2016; 35 (02) 81-87
  • 67 Jung H, Bleazard T, Lee J, Hong D. Systematic investigation of cancer-associated somatic point mutations in SNP databases. Nat Biotechnol 2013; 31 (09) 787-789
  • 68 Soussi T, Leroy B, Devir M, Rosenberg S. High prevalence of cancer-associated TP53 variants in the gnomAD database: A word of caution concerning the use of variant filtering. Hum Mutat 2019; 40 (05) 516-524
  • 69 Muramatsu M, Sankaranand VS, Anant S. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 1999; 274 (26) 18470-18476
  • 70 Álvarez-Prado ÁF, Pérez-Durán P, Pérez-García A. et al. A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J Exp Med 2018; 215 (03) 761-771
  • 71 Caval V, Jiao W, Berry N. et al. Mouse APOBEC1 cytidine deaminase can induce somatic mutations in chromosomal DNA. BMC Genomics 2019; 20 (01) 858
  • 72 Harris RS, Petersen-Mahrt SK, Neuberger MS. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell 2002; 10 (05) 1247-1253
  • 73 Harris RS. Molecular mechanism and clinical impact of APOBEC3B-catalyzed mutagenesis in breast cancer. Breast Cancer Res 2015; 17: 8
  • 74 Rouhani FJ, Nik-Zainal S, Wuster A. et al. Mutational history of a human cell lineage from somatic to induced pluripotent stem cells. PLoS Genet 2016; 12 (04) e1005932
  • 75 Sinha AU, Meller J. Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. BMC Bioinformatics 2007; 8: 82
  • 76 Jaiswal S, Fontanillas P, Flannick J. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371 (26) 2488-2498
  • 77 Parada LA, McQueen PG, Misteli T. Tissue-specific spatial organization of genomes. Genome Biol 2004; 5 (07) R44
  • 78 Bolzer A, Kreth G, Solovei I. et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 2005; 3 (05) e157
  • 79 Lieberman-Aiden E, van Berkum NL, Williams L. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009; 326 (5950): 289-293
  • 80 Stadler MB, Murr R, Burger L. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 2011; 480 (7378): 490-495
  • 81 Kazanov MD, Roberts SA, Polak P. et al. APOBEC-induced cancer mutations are uniquely enriched in early-replicating, gene-dense, and active chromatin regions. Cell Rep 2015; 13 (06) 1103-1109
  • 82 Yadav VK, DeGregori J, De S. The landscape of somatic mutations in protein coding genes in apparently benign human tissues carries signatures of relaxed purifying selection. Nucleic Acids Res 2016; 44 (05) 2075-2084