RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2021; 53(17): 3029-3036
DOI: 10.1055/a-1416-6997
DOI: 10.1055/a-1416-6997
special topic
Bond Activation – in Honor of Prof. Shinji Murai
Synthesis of Benzo-Fused Cyclic Compounds via Rhodium-Catalyzed Decarboxylative Coupling of Aromatic Carboxylic Acids with Alkynes
This work was partly supported by the Japan Society for the Promotion of Science (JSPS) (KAKENHI) (Grant Nos. 20H02745 and 18K19083), and by Osaka City University (OCU) Strategic Research Grant 2020 for basic research to T.S. and the JSPS (KAKENHI) (Grant No. 18H04627) to Y.U.
Abstract
The decarboxylative coupling of diversely substituted benzoic acids with internal alkynes proceeds smoothly in the presence of a [RhCl(cod)]2/1,2,3,4-tetraphenyl-1,3-cyclopentadiene catalyst system to selectively produce highly substituted naphthalene derivatives. The catalyst system is applicable to constructing anthracene and benzo[c]thiophene frameworks through reactions of naphthoic and thiophene-2-carboxylic acids, respectively.
Key words
C–H functionalization - carboxylic acids - decarboxylative coupling - homologation - rhodium catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1416-6997.
- Supporting Information
Publikationsverlauf
Eingereicht: 17. Februar 2021
Angenommen nach Revision: 08. März 2021
Accepted Manuscript online:
08. März 2021
Artikel online veröffentlicht:
01. April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
- 1b Font M, Quibell JM, Perry GJ. P, Larrosa I. Chem. Commun. 2017; 53: 5584
- 1c Drapeau MP, Gooßen LJ. Chem. Eur. J. 2016; 23: 18654
- 1d Satoh T, Miura M. Synthesis 2010; 3395
- 2a Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature 1993; 366: 529
- 2b Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Farooq Zia M, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 2c Gulías M, Mascareñas JL. Angew. Chem. Int. Ed. 2016; 55: 11000
- 2d Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
- 2e Song G, Li X. Acc. Chem. Res. 2015; 48: 1007
- 2f Ye J, Lautens M. Nat. Chem. 2015; 7: 863
- 2g Miura M, Satoh T, Hirano K. Bull. Chem. Soc. Jpn. 2014; 87: 751
- 2h De Sarkar S, Liu W, Kozhushkov SI, Ackermann L. Adv. Synth. Catal. 2014; 356: 1461
- 2i Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
- 2j Colby DA, Tsai AS, Bergman RG, Ellman JA. Acc. Chem. Res. 2012; 45: 814
- 2k Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 2l Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
- 2m Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
- 3a Unoh Y, Hirano K, Satoh T, Miura M. Tetrahedron 2013; 69: 4454
- 3b Shimizu M, Hirano K, Satoh T, Miura M. J. Org. Chem. 2009; 74: 3478
- 3c Ueura K, Satoh T, Miura M. Org. Lett. 2007; 9: 1407
- 4a Hirosawa K, Usuki Y, Satoh T. Adv. Synth. Catal. 2019; 361: 5253
- 4b Ueura K, Satoh T, Miura M. J. Org. Chem. 2007; 72: 5362
- 5a Wang H, Wang Y, Yang H, Tan C, Jiang Y, Zhao Y, Fu H. Adv. Synth. Catal. 2015; 357: 489
- 5b Fukutani T, Hirano K, Satoh T, Miura M. J. Org. Chem. 2011; 76: 2867
- 5c Uto T, Shimizu M, Ueura K, Tsurugi H, Satoh T, Miura M. J. Org. Chem. 2008; 73: 298
- 5d Yasukawa T, Satoh T, Miura M, Nomura M. J. Am. Chem. Soc. 2002; 124: 12680
- 5e Kawasaki S, Satoh T, Miura M, Nomura M. J. Org. Chem. 2003; 68: 6836
- 5f Wu G, Rheingold AL, Feib SL, Heck RF. Organometallics 1987; 6: 1941
- 5g Sakakibara T, Tanaka Y, Yamasaki T.-I. Chem. Lett. 1986; 797
- 6a Honjo Y, Shibata Y, Tanaka K. Chem. Eur. J. 2019; 25: 9427
- 6b Honjo Y, Shibata Y, Kudo E, Namba T, Masutomi K, Tanaka K. Chem. Eur. J. 2018; 24: 317
- 7a Molotkov AP, Arsenov MA, Kapustin DA, Muratov DV, Shepel’ NE, Fedorov YV, Smol’yakov AF, Knyazeva EI, Lypenko DA, Dmitriev AV, Aleksandrov AE, Maltsev EI, Loginov DA. ChemPlusChem 2020; 85: 334
- 7b Datsenko VP, Nelyubina YV, Smol’yakov AF, Loginov DA. J. Organomet. Chem. 2018; 874: 7
- 7c Loginov DA, Konoplev VE. J. Organomet. Chem. 2018; 867: 14
- 7d Loginov DA, Belova AO, Kudinov AR. Russ. Chem. Bull. 2014; 63: 983
- 8a Shimizu M, Tsurugi H, Satoh T, Miura M. Chem. Asian J. 2008; 3: 881
- 8b Umeda N, Tsurugi H, Satoh T, Miura M. Angew. Chem. Int. Ed. 2008; 47: 4019
- 8c Mochida S, Shimizu M, Hirano K, Satoh T, Miura M. Chem. Asian J. 2010; 5: 847
- 9 In contrast, C5H2Ph4 is known to readily coordinate to rhodium, see: Davies DL, Ellul CE, Singh K. J. Organomet. Chem. 2019; 879: 151
- 10a Chávez-González M, Rodríguez-Durán LV, Balagurusamy N, Prado-Barragán A, Rodríguez R, Contreras JC, Aguilar CN. Food Bioprocess Technol. 2012; 5: 445
- 10b Moodley B, Mulholland DA, Brookes HC. Water SA 2012; 38: 1
- 10c van Haveren J, Scott EL, Sanders J. Biofuels Bioprod. Bioref. 2008; 2: 41
- 10d Xu Y, Hanna MA, Isom L. Open Agric. J. 2008; 2: 54
- 10e Kambourakis S, Draths KM, Frost JW. J. Am. Chem. Soc. 2000; 122: 9042
- 11 A similar regioselective annulation has been observed in the ruthenium-catalyzed 1:1 coupling of 1n with alkynes, see: Chinnagolla RK, Jeganmohan M. Chem. Commun. 2012; 48: 2030
- 12 For related selective anthracene construction from 2-naphthaleneboronic acids, see ref. 5b.
- 13 For the related synthesis of benzo[c]thiophenes from thiophene-2-carbamides, see: Fukuzumi K, Unoh Y, Nishii Y, Satoh T, Hirano K, Miura M. J. Org. Chem. 2016; 81: 2474
- 14a Novák Z, Nemes P, Kotschy A. Org. Lett. 2004; 6: 4917
- 14b Moon J, Jang M, Lee S. J. Org. Chem. 2008; 74: 1403
- 14c Hein SJ, Arslan H, Keresztes I, Dichtel WR. Org. Lett. 2014; 16: 4416
- 15 Peng S, Sun Z, Zhu H, Chen N, Sun X, Gong X, Wang J, Wang L. Org. Lett. 2020; 22: 3200
- 16 Wu YT, Huang K.-H, Shin C.-C, Wu T.-C. Chem. Eur. J. 2008; 14: 6697
For representative reviews, see:
For pioneering work, see:
See also selected reviews on C–H functionalization:
For homologation reactions of readily available mono-substituted aromatic substrates, see:
The catalyst system of [RhCl(cod)]2/C5H2Ph4 has been employed for various dehydrogenative couplings, see:
For example, see: