Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(18): 3299-3306
DOI: 10.1055/a-1416-9737
DOI: 10.1055/a-1416-9737
special topic
Bond Activation – in Honor of Prof. Shinji Murai
Synthesis of Unsymmetrically Substituted Tetraphenylenes through Palladium-Catalyzed C(sp2)–H Activation
The work was supported by the National Natural Science Foundation of China (No.216721626) and the Shanghai Science and Technology Commission (14DZ2261100).
Abstract
An efficient protocol for the palladium-catalyzed cross-coupling reaction of 2-iodobiphenyls with biphenylene has been developed through C–H activation. The reaction provides a simple and efficient method for the synthesis of unsymmetrically substituted tetraphenylenes.
Key words
palladium catalysis - C–H activation - tetraphenylenes - cross-coupling - unsymmetrical substitutionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1416-9737.
- Supporting Information
Publication History
Received: 14 January 2021
Accepted after revision: 08 March 2021
Accepted Manuscript online:
08 March 2021
Article published online:
01 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Karle IL, Brockway LO. J. Am. Chem. Soc. 1944; 66: 1974
- 1b Irngartinger H, Reibel WR. K. Acta Crystallogr., Sect. B 1981; 37: 1724
- 1c Huang H, Hau C.-K, Law CC. M, Wong HN. C. Org. Biomol. Chem. 2009; 7: 1249
- 1d Han J.-W, Chen J.-X, Li X, Peng X.-S, Wong HN. C. Synlett 2013; 24: 2188
- 2a Rashidi-Ranjbar P, Man Y.-M, Sandström J, Wong HN. C. J. Org. Chem. 1989; 54: 4888
- 2b Rajca A, Rajca S, Pink M, Miyasaka M. Synlett 2007; 1799
- 2c Bachrach SM. J. Org. Chem. 2009; 74: 3609
- 2d Huang H, Stewart T, Gutmann M, Ohhara T, Niimura N, Li Y.-X, Wen J.-F, Bau R, Wong HN. C. J. Org. Chem. 2009; 74: 359
- 2e Rajca A, Rajca S. Angew. Chem. Int. Ed. 2010; 49: 672
- 3a Rajca A, Safronov A, Rajca S, Ross CR. II, Stezowski JJ. J. Am. Chem. Soc. 1996; 118: 7272
- 3b Rajca A, Safronov A, Rajca S, Shoemaker R. Angew. Chem., Int. Ed. Engl. 1997; 36: 488
- 3c Elliott EL, Orita A, Hasegawa D, Gantzel P, Otera J, Siegel JS. Org. Biomol. Chem. 2005; 3: 581
- 3d Hisaki I, Sonoda M, Tobe Y. Eur. J. Org. Chem. 2006; 833
- 3e Hau C.-K, Chui SS.-Y, Lu W, Che C.-M, Cheng P.-S, Mak TC. W, Miao Q, Wong HN. C. Chem. Sci. 2011; 2: 1068
- 3f Xiong X.-D, Deng C.-L, Peng X.-S, Miao Q, Wong HN. C. Org. Lett. 2014; 16: 3252
- 4a Mak TC. W, Wong HN. C. Tetraphenylene and Related Hosts . In Comprehensive Supramolecular Chemistry, Vol. 6. MacNicol DD, Toda F, Bishop P. Pergamon Press; Oxford: 1996: 351-369
- 4b Mak TC. W, Wong HN. C. Top. Curr. Chem. 1987; 140: 141
- 4c Man Y.-M, Mak TC. W, Wong HN. C. J. Org. Chem. 1990; 55: 3214
- 4d Yang X.-P, Du D.-M, Li Q, Mak TC. W, Wong HN. C. Chem. Commun. 1999; 1607
- 4e Lai CW, Lam CK, Lee HK, Mak TC. W, Wong HN. C. Org. Lett. 2003; 5: 823
- 4f Wen J.-F, Hong W, Yuan K, Mak TC. W, Wong HN. C. J. Org. Chem. 2003; 68: 8918
- 4g Lin F, Peng H.-Y, Chen J.-X, Chik DT. W, Cai Z, Wong KM. C, Yam VW. W, Wong HN. C. J. Am. Chem. Soc. 2010; 132: 16383
- 5a Peng H.-Y, Lam C.-K, Mak TC. W, Cai Z, Ma W.-T, Li Y.-X, Wong HN. C. J. Am. Chem. Soc. 2005; 127: 9603
- 5b Wu A.-H, Hau C.-K, Wong HN. C. Adv. Synth. Catal. 2007; 349: 601
- 6a Wittig G, Lehmann G. Chem. Ber. 1957; 90: 875
- 6b Wittig G, Klar G. Justus Liebigs Ann. Chem. 1967; 704: 91
- 6c Hellwinkel D, Reiff G, Nykodym V. Liebigs Ann. Chem. 1977; 1013
- 6d Rajca A, Safronov A, Rajca S, Wongsriratanakul J. J. Am. Chem. Soc. 2000; 122: 3351
- 6e Kabir SM. H, Iyoda M. Synthesis 2000; 1839
- 6f Rajca A, Wang H, Bolshov P, Rajca S. Tetrahedron 2001; 57: 3725
- 7a Xing Y.-D, Huang NZ. J. Org. Chem. 1982; 47: 140
- 7b Wang X.-M, Hou X.-L, Zhou Z.-Y, Mak TC. W, Wong HN. C. J. Org. Chem. 1993; 58: 7498
- 7c Song Q, Lebeis CW, Shen X, Ho DM, Pascal RA. Jr. J. Am. Chem. Soc. 2005; 127: 13732
- 8a Eisch JJ, Piotrowski AM, Han KI, Krüger C, Tsay YH. Organometallics 1985; 4: 224
- 8b Schwager H, Spyroudis S, Vollhardt KP. C. J. Organomet. Chem. 1990; 382: 191
- 8c Edelbach BL, Lachicotte RJ, Jones WD. J. Am. Chem. Soc. 1998; 120: 2843
- 8d Simhai N, Iverson CN, Edelbach BL, Jones WD. Organometallics 2001; 20: 2759
- 8e Perthuisot C, Edelbach BL, Zubris DL, Simhai N, Iverson CN, Müller C, Satoh T, Jones WD. J. Mol. Catal. A: Chem. 2002; 189: 157
- 8f Beck R, Johnson SA. Chem. Commun. 2011; 47: 9233
- 9a Lindow DF, Friedman L. J. Am. Chem. Soc. 1967; 89: 1271
- 9b Friedman L, Lindow DF. J. Am. Chem. Soc. 1968; 90: 2324
- 10a Jiang H, Zhang Y, Chen D.-S, Zhou B, Zhang Y.-H. Org. Lett. 2016; 18: 2032
- 10b Zhu C.-D, Zhao Y, Wang D, Sun W.-Y, Shi Z.-Z. Sci. Rep. 2016; 6: 33131
- 11 Fukuzumi K, Nishii Y, Miura M. Angew. Chem. Int. Ed. 2017; 56: 12746
- 12 Shibata T, Chiba T, Hirashima H, Ueno Y, Endo K. Angew. Chem. Int. Ed. 2009; 48: 8066
- 13 Fukuzumi K, Nishii Y, Miura M. Bull. Chem. Soc. Jpn. 2019; 92: 2030
- 14a C–H Activation . Yu J.-Q, Shi Z. Springer; Heidelberg: 2010
- 14b Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
- 14c Zhang Y.-H, Shi G, Yu J.-Q. Carbon–Carbon s-Bond Formation via C–H Bond Functionalization . In Comprehensive Organic Synthesis, 2nd ed., Vol. 3. Molander G, Knochel P. Elsevier; Oxford: 2014: 1101-1209
- 14d Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
- 14e Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
- 14f Miao J, Ge H. Eur. J. Org. Chem. 2015; 7859
- 14g Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 14h Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 14i Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
- 15a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 15b Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 15c Rousseau G, Breit B. Angew. Chem. Int. Ed. 2011; 50: 2450
- 15d Zhang FZ, Spring DR. Chem. Soc. Rev. 2014; 43: 6906
- 16a Chaumontet M, Piccardi R, Audic N, Hitce J, Peglion JL, Clot E, Baudoin O. J. Am. Chem. Soc. 2008; 130: 15157
- 16b Rousseaux S, Davi M, Sofack-Kreutzer J, Pierre C, Kefalidis CE, Clot E, Fagnou K, Baudoin O. J. Am. Chem. Soc. 2010; 132: 10706
- 16c Shintani R, Otomo H, Ota K, Hayashi T. J. Am. Chem. Soc. 2012; 134: 7305
- 16d Deng R, Huang Y, Ma X, Li G, Zhu R, Wang B, Kang Y.-B, Gu Z. J. Am. Chem. Soc. 2014; 136; 4472
- 16e Gao D.-W, Yin Q, Gu Q, You S.-L. J. Am. Chem. Soc. 2014; 136: 4841
- 16f Yan J.-X, Li H, Liu X.-W, Shi J.-L, Wang X, Shi Z.-J. Angew. Chem. Int. Ed. 2014; 53: 4945
- 16g Dyker G. Angew. Chem. Int. Ed. 1992; 31: 1023
- 16h Dyker G. Angew. Chem. Int. Ed. 1994; 33: 103
- 16i Xu S, Chen R, Fu Z, Zhou Q, Zhang Y, Wang J. ACS Catal. 2017; 7: 1993
- 16j Gutiérrez-Bonet Á, Juliá-Hernández F, de Luis B, Martin R. J. Am. Chem. Soc. 2016; 138: 6384
- 16k Lv W, Wen S, Yu J, Cheng G. Org. Lett. 2018; 20: 4984
- 16l Li W, Chen W, Zhou B, Xu Y, Deng G, Liang Y, Yang Y. Org. Lett. 2019; 21: 2718
- 16m Tan B, Lu B, Ding P, Liu J, Wang Y, Luan X. Angew. Chem. Int. Ed. 2019; 58: 1474
- 16n Cai S.-L, Li Y, Yang C, Sheng J, Wang X.-S. ACS. Catal. 2019; 9: 10299
- 16o Wei D, Li M.-Y, Zhu B.-B, Yang X.-D, Zhang F, Feng C.-G, Lin G.-Q. Angew. Chem. Int. Ed. 2019; 58: 16543
- 17a Wu Z, Ma D, Zhou B, Ji X.-M, Ma X.-T, Wang X.-L, Zhang Y.-H. Angew. Chem. Int. Ed. 2017; 56: 12288
- 17b Lu A.-L, Ji X.-M, Zhou B, Wu Z, Zhang Y.-H. Angew. Chem. Int. Ed. 2018; 57: 3233
- 17c Sun X.-L, Wu Z, Qi W.-X, Ji X.-M, Cheng C, Zhang Y.-H. Org. Lett. 2019; 21: 6508
- 17d Gu Y.-C, Sun X.-L, Wan B, Lu Z.-E, Zhang Y.-H. Chem. Commun. 2020; 56: 10942
- 18 Masselot D, Charmant JP. H, Gallagher T. J. Am. Chem. Soc. 2006; 128: 694
- 19 Matsubara S, Koga Y, Segawa Y, Murakami K, Itami K. Nat. Catal. 2020; 3: 710
-
20 CCDC 2067769 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures