Synthesis 2021; 53(18): 3299-3306
DOI: 10.1055/a-1416-9737
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Synthesis of Unsymmetrically Substituted Tetraphenylenes through Palladium-Catalyzed C(sp2)–H Activation

Bin Wan
,
Yanghui Zhang
The work was supported by the National Natural Science Foundation of China (No.216721626) and the Shanghai Science and Technology Commission (14DZ2261100).


Abstract

An efficient protocol for the palladium-catalyzed cross-coupling reaction of 2-iodobiphenyls with biphenylene has been developed through C–H activation. The reaction provides a simple and efficient method for the synthesis of unsymmetrically substituted tetra­phenylenes.

Supporting Information



Publication History

Received: 14 January 2021

Accepted after revision: 08 March 2021

Accepted Manuscript online:
08 March 2021

Article published online:
01 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Karle IL, Brockway LO. J. Am. Chem. Soc. 1944; 66: 1974
    • 1b Irngartinger H, Reibel WR. K. Acta Crystallogr., Sect. B 1981; 37: 1724
    • 1c Huang H, Hau C.-K, Law CC. M, Wong HN. C. Org. Biomol. Chem. 2009; 7: 1249
    • 1d Han J.-W, Chen J.-X, Li X, Peng X.-S, Wong HN. C. Synlett 2013; 24: 2188
    • 2a Rashidi-Ranjbar P, Man Y.-M, Sandström J, Wong HN. C. J. Org. Chem. 1989; 54: 4888
    • 2b Rajca A, Rajca S, Pink M, Miyasaka M. Synlett 2007; 1799
    • 2c Bachrach SM. J. Org. Chem. 2009; 74: 3609
    • 2d Huang H, Stewart T, Gutmann M, Ohhara T, Niimura N, Li Y.-X, Wen J.-F, Bau R, Wong HN. C. J. Org. Chem. 2009; 74: 359
    • 2e Rajca A, Rajca S. Angew. Chem. Int. Ed. 2010; 49: 672
    • 3a Rajca A, Safronov A, Rajca S, Ross CR. II, Stezowski JJ. J. Am. Chem. Soc. 1996; 118: 7272
    • 3b Rajca A, Safronov A, Rajca S, Shoemaker R. Angew. Chem., Int. Ed. Engl. 1997; 36: 488
    • 3c Elliott EL, Orita A, Hasegawa D, Gantzel P, Otera J, Siegel JS. Org. Biomol. Chem. 2005; 3: 581
    • 3d Hisaki I, Sonoda M, Tobe Y. Eur. J. Org. Chem. 2006; 833
    • 3e Hau C.-K, Chui SS.-Y, Lu W, Che C.-M, Cheng P.-S, Mak TC. W, Miao Q, Wong HN. C. Chem. Sci. 2011; 2: 1068
    • 3f Xiong X.-D, Deng C.-L, Peng X.-S, Miao Q, Wong HN. C. Org. Lett. 2014; 16: 3252
    • 4a Mak TC. W, Wong HN. C. Tetraphenylene and Related Hosts . In Comprehensive Supramolecular Chemistry, Vol. 6. MacNicol DD, Toda F, Bishop P. Pergamon Press; Oxford: 1996: 351-369
    • 4b Mak TC. W, Wong HN. C. Top. Curr. Chem. 1987; 140: 141
    • 4c Man Y.-M, Mak TC. W, Wong HN. C. J. Org. Chem. 1990; 55: 3214
    • 4d Yang X.-P, Du D.-M, Li Q, Mak TC. W, Wong HN. C. Chem. Commun. 1999; 1607
    • 4e Lai CW, Lam CK, Lee HK, Mak TC. W, Wong HN. C. Org. Lett. 2003; 5: 823
    • 4f Wen J.-F, Hong W, Yuan K, Mak TC. W, Wong HN. C. J. Org. Chem. 2003; 68: 8918
    • 4g Lin F, Peng H.-Y, Chen J.-X, Chik DT. W, Cai Z, Wong KM. C, Yam VW. W, Wong HN. C. J. Am. Chem. Soc. 2010; 132: 16383
    • 5a Peng H.-Y, Lam C.-K, Mak TC. W, Cai Z, Ma W.-T, Li Y.-X, Wong HN. C. J. Am. Chem. Soc. 2005; 127: 9603
    • 5b Wu A.-H, Hau C.-K, Wong HN. C. Adv. Synth. Catal. 2007; 349: 601
    • 6a Wittig G, Lehmann G. Chem. Ber. 1957; 90: 875
    • 6b Wittig G, Klar G. Justus Liebigs Ann. Chem. 1967; 704: 91
    • 6c Hellwinkel D, Reiff G, Nykodym V. Liebigs Ann. Chem. 1977; 1013
    • 6d Rajca A, Safronov A, Rajca S, Wongsriratanakul J. J. Am. Chem. Soc. 2000; 122: 3351
    • 6e Kabir SM. H, Iyoda M. Synthesis 2000; 1839
    • 6f Rajca A, Wang H, Bolshov P, Rajca S. Tetrahedron 2001; 57: 3725
    • 7a Xing Y.-D, Huang NZ. J. Org. Chem. 1982; 47: 140
    • 7b Wang X.-M, Hou X.-L, Zhou Z.-Y, Mak TC. W, Wong HN. C. J. Org. Chem. 1993; 58: 7498
    • 7c Song Q, Lebeis CW, Shen X, Ho DM, Pascal RA. Jr. J. Am. Chem. Soc. 2005; 127: 13732
    • 8a Eisch JJ, Piotrowski AM, Han KI, Krüger C, Tsay YH. Organometallics 1985; 4: 224
    • 8b Schwager H, Spyroudis S, Vollhardt KP. C. J. Organomet. Chem. 1990; 382: 191
    • 8c Edelbach BL, Lachicotte RJ, Jones WD. J. Am. Chem. Soc. 1998; 120: 2843
    • 8d Simhai N, Iverson CN, Edelbach BL, Jones WD. Organometallics 2001; 20: 2759
    • 8e Perthuisot C, Edelbach BL, Zubris DL, Simhai N, Iverson CN, Müller C, Satoh T, Jones WD. J. Mol. Catal. A: Chem. 2002; 189: 157
    • 8f Beck R, Johnson SA. Chem. Commun. 2011; 47: 9233
    • 9a Lindow DF, Friedman L. J. Am. Chem. Soc. 1967; 89: 1271
    • 9b Friedman L, Lindow DF. J. Am. Chem. Soc. 1968; 90: 2324
    • 10a Jiang H, Zhang Y, Chen D.-S, Zhou B, Zhang Y.-H. Org. Lett. 2016; 18: 2032
    • 10b Zhu C.-D, Zhao Y, Wang D, Sun W.-Y, Shi Z.-Z. Sci. Rep. 2016; 6: 33131
  • 11 Fukuzumi K, Nishii Y, Miura M. Angew. Chem. Int. Ed. 2017; 56: 12746
  • 12 Shibata T, Chiba T, Hirashima H, Ueno Y, Endo K. Angew. Chem. Int. Ed. 2009; 48: 8066
  • 13 Fukuzumi K, Nishii Y, Miura M. Bull. Chem. Soc. Jpn. 2019; 92: 2030
    • 14a C–H Activation . Yu J.-Q, Shi Z. Springer; Heidelberg: 2010
    • 14b Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 14c Zhang Y.-H, Shi G, Yu J.-Q. Carbon–Carbon s-Bond Formation via C–H Bond Functionalization . In Comprehensive Organic Synthesis, 2nd ed., Vol. 3. Molander G, Knochel P. Elsevier; Oxford: 2014: 1101-1209
    • 14d Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
    • 14e Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 14f Miao J, Ge H. Eur. J. Org. Chem. 2015; 7859
    • 14g Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 14h Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
    • 14i Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
    • 15a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 15b Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 15c Rousseau G, Breit B. Angew. Chem. Int. Ed. 2011; 50: 2450
    • 15d Zhang FZ, Spring DR. Chem. Soc. Rev. 2014; 43: 6906
    • 16a Chaumontet M, Piccardi R, Audic N, Hitce J, Peglion JL, Clot E, Baudoin O. J. Am. Chem. Soc. 2008; 130: 15157
    • 16b Rousseaux S, Davi M, Sofack-Kreutzer J, Pierre C, Kefalidis CE, Clot E, Fagnou K, Baudoin O. J. Am. Chem. Soc. 2010; 132: 10706
    • 16c Shintani R, Otomo H, Ota K, Hayashi T. J. Am. Chem. Soc. 2012; 134: 7305
    • 16d Deng R, Huang Y, Ma X, Li G, Zhu R, Wang B, Kang Y.-B, Gu Z. J. Am. Chem. Soc. 2014; 136; 4472
    • 16e Gao D.-W, Yin Q, Gu Q, You S.-L. J. Am. Chem. Soc. 2014; 136: 4841
    • 16f Yan J.-X, Li H, Liu X.-W, Shi J.-L, Wang X, Shi Z.-J. Angew. Chem. Int. Ed. 2014; 53: 4945
    • 16g Dyker G. Angew. Chem. Int. Ed. 1992; 31: 1023
    • 16h Dyker G. Angew. Chem. Int. Ed. 1994; 33: 103
    • 16i Xu S, Chen R, Fu Z, Zhou Q, Zhang Y, Wang J. ACS Catal. 2017; 7: 1993
    • 16j Gutiérrez-Bonet Á, Juliá-Hernández F, de Luis B, Martin R. J. Am. Chem. Soc. 2016; 138: 6384
    • 16k Lv W, Wen S, Yu J, Cheng G. Org. Lett. 2018; 20: 4984
    • 16l Li W, Chen W, Zhou B, Xu Y, Deng G, Liang Y, Yang Y. Org. Lett. 2019; 21: 2718
    • 16m Tan B, Lu B, Ding P, Liu J, Wang Y, Luan X. Angew. Chem. Int. Ed. 2019; 58: 1474
    • 16n Cai S.-L, Li Y, Yang C, Sheng J, Wang X.-S. ACS. Catal. 2019; 9: 10299
    • 16o Wei D, Li M.-Y, Zhu B.-B, Yang X.-D, Zhang F, Feng C.-G, Lin G.-Q. Angew. Chem. Int. Ed. 2019; 58: 16543
    • 17a Wu Z, Ma D, Zhou B, Ji X.-M, Ma X.-T, Wang X.-L, Zhang Y.-H. Angew. Chem. Int. Ed. 2017; 56: 12288
    • 17b Lu A.-L, Ji X.-M, Zhou B, Wu Z, Zhang Y.-H. Angew. Chem. Int. Ed. 2018; 57: 3233
    • 17c Sun X.-L, Wu Z, Qi W.-X, Ji X.-M, Cheng C, Zhang Y.-H. Org. Lett. 2019; 21: 6508
    • 17d Gu Y.-C, Sun X.-L, Wan B, Lu Z.-E, Zhang Y.-H. Chem. Commun. 2020; 56: 10942
  • 18 Masselot D, Charmant JP. H, Gallagher T. J. Am. Chem. Soc. 2006; 128: 694
  • 19 Matsubara S, Koga Y, Segawa Y, Murakami K, Itami K. Nat. Catal. 2020; 3: 710
  • 20 CCDC 2067769 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures