Subscribe to RSS
DOI: 10.1055/a-1422-9411
Simple and Efficient Synthesis of Allyl Sulfones through Cs2CO3-Mediated Radical Sulfonylation of Morita–Baylis–Hillman Adducts with Thiosulfonates
We thank the Department of Science & Technology - Promotion of University Research and Scientific Excellence (DST-PURSE; SR/PURSE Phase 2/32/G) and the Council of Scientific and Industrial Research (CSIR-EMR-II; 02(0340)/18/EMR-II) for funding support. A.S. and M.W. thank CSIR-SRF and UGC-SRF, respectively, for their Research Fellowships.
Abstract
A highly efficient and eco-friendly method has been developed for the synthesis of allyl sulfones using Morita–Baylis–Hillman (MBH) adducts and thiosulfonates under mild conditions. The Cs2CO3-promoted radical sulfonylation provided a series of allyl sulfones in good to high yields with high stereoselectivities. A wide variety of MBH bromides/acetates as well as thiosulfonates were tolerated and reliable in scaled-up synthesis. A plausible mechanism is proposed to rationalize the radical sulfonylation.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1422-9411.
- Supporting Information
Publication History
Received: 16 February 2021
Accepted after revision: 08 March 2021
Accepted Manuscript online:
10 March 2021
Article published online:
29 March 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Zefirof NS, Zyk NV, Beloglazkina EK, Kutateladze AG. Sulfur Rep. 1993; 14: 223
- 1b Pannecoucke X, Besset T. Org. Biomol. Chem. 2019; 17: 1683
- 1c For a general and excellent review on thiosulfonates, see: Mampuys P, McElroy CR, Clark JH, Orru RV. A, Maes BU. W. Adv. Synth. Catal. 2020; 362: 3; and references therein
- 2a Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
- 2b Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
- 2c Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
- 2d Haruki H, Pedersen MG, Gorska KI, Pojer F, Johnsson K. Science 2013; 340: 987
- 2e Deming TJ. Bioconjugate Chem. 2017; 28: 691
- 2f Organosulfur Chemistry I & II. Page PC. B. Springer; Berlin: 1999
- 2g Simpkins NS. Sulphones in Organic Synthesis, Vol. 10. Pergamon Press Ltd; Oxford: 2013: 1-367
- 3a Chen H, Yan Y, Zhang N, Mo Z, Xu Y, Chen Y. Org. Lett. 2021; 23: 376
- 3b Ielo L, Pillari V, Gajic N, Holzer W, Pace V. Chem. Commun. 2020; 56: 12395
- 3c Reddy RJ, Shankar A, Kumari AH. Asian J. Org. Chem. 2019; 8: 2269
- 3d Reddy RJ, Kumar JJ, Kumari AH. Eur. J. Org. Chem. 2019; 3771
- 3e Fang Y, Rogge T, Ackermann L, Wang S.-Y, Ji S.-J. Nat. Commun. 2018; 9: 2240
- 3f Kanemoto K, Sugimura Y, Shimizu S, Yoshida S, Hosoya T. Chem. Commun. 2017; 53: 10640
- 3g Wang W, Peng X, Wei F, Tung C.-H, Xu Z. Angew. Chem. Int. Ed. 2016; 55: 649
- 3h Yoshida S, Sugimura Y, Hazama Y, Nishiyama Y, Yano T, Shimizu S, Hosoya T. Chem. Commun. 2015; 51: 16613
- 3i Mampuys P, Zhu Y, Vlaar T, Ruijter E, Orru RV. A, Maes BU. W. Angew. Chem. Int. Ed. 2014; 53: 12849
- 4a Gilbert BC, Gill B, Sexton MD. J. Chem. Soc., Chem. Commun. 1978; 78
- 4b Chatgilialoglu C, Gilbert BC, Gill B, Sexton MD. J. Chem. Soc., Perkin Trans. 2 1980; 1141
- 5a Zhou X, Peng Z, Wang PG. Liu Q, Jia T. Org. Lett. 2021; 23: 1054
- 5b Gadde K, Mampuys P, Guidetti A, Ching HY. V, Herrebout WA, Van Doorslaer S, Tehrani KA, Maes BU. W. ACS Catal. 2020; 10: 8765
- 5c Peng Z, Yin H, Zhang H, Jia T. Org. Lett. 2020; 22: 5885
- 5d Song T, Li H, Wei F, Tung C.-H, Xu Z. Tetrahedron Lett. 2019; 60: 916
- 5e Reddy RJ, Kumari AH, Kumar JJ, Nanubolu JB. Adv. Synth. Catal. 2019; 361: 1587
- 5f Yuan H, Thirupathi N, Gao H, Tung C.-H, Xu Z. Org. Chem. Front. 2018; 5: 1371
- 5g Li H, Cheng Z, Tung C.-H, Xu Z. ACS Catal. 2018; 8: 8237
- 5h Li H, Shan C, Tung C.-H, Xu Z. Chem. Sci. 2017; 8: 2610
- 5i Zhao Q, Lu L, Shen Q. Angew. Chem. Int. Ed. 2017; 56: 11575
- 5j Zhu D, Shao X, Hong X, Lu L, Shen Q. Angew. Chem. Int. Ed. 2016; 55: 15807
- 6a Mao K, Bian M, Dai L, Zhang J, Yu Q, Wang C, Rong L. Org. Lett. 2021; 23: 218
- 6b Liang Q, Walsh PJ, Jia T. ACS Catal. 2020; 10: 2633
- 6c Reddy RJ, Shankar A, Waheed M, Nanubolu JB. Tetrahedron Lett. 2018; 59: 2014
- 6d Shyam PK, Jang H.-Y. J. Org. Chem. 2017; 82: 1761
- 6e Shyam PK, Son S, Jang H.-Y. Eur. J. Org. Chem. 2017; 5025
- 7a Kim S, Lim CJ. Angew. Chem. Int. Ed. 2002; 41: 3265
- 7b Quiclet-Sire B, Seguin S, Zard SZ. Angew. Chem. Int. Ed. 1998; 37: 2864
- 7c Wrobel Z. Tetrahedron 1998; 54: 2607
- 7d For a review, see: EI-Awa A, Noshi MN, du Jourdin XM, Fuchs PL. Chem. Rev. 2009; 109: 2315
- 8a Neamati N, Kabalka GW, Venkataiah B, Dayam R. US Patent 0203224, 2007
- 8b Götz MG, Caffrey CR, Hansell E, McKerrow JH, Powers JC. Bioorg. Med. Chem. 2004; 12: 5203
- 8c Powers JC, Götz MG. US Patent 0241057, 2006
- 8d Gershengorn MC. US Patent 0203716, 2009
- 8e Reck F, Zhou F, Girardot M, Kern G, Eyermann CJ, Hales NJ, Ramsay RR, Gravestock MB. J. Med. Chem. 2005; 48: 499
- 9a Kabalka GW, Venkataiah B, Dong G. Tetrahedron Lett. 2003; 44: 4673
- 9b Chandrasekhar S, Saritha B, Jagadeshwer V, Narsihmulu C, Vijay D, Sarma GD, Jagadeesh B. Tetrahedron Lett. 2006; 47: 2981
- 9c Wang Q, Sheng SR, Lin SY, Guo L, Wei MH, Huang X. Chin. J. Chem. 2007; 25: 1027
- 9d Khamri S, Turki T, Amri H. J. Soc. Chim. Tunisie 2008; 10: 149
- 9e Karnakar K, Shankar J, Murthy SN, Nageswar YV. D. Helv. Chim. Acta 2011; 94: 875
- 9f Jiang L, Li Y.-G, Zhou J.-F, Chuan Y.-M, Li H.-L, Yuan M.-L. Molecules 2015; 20: 8213
- 10a Reddy LR, Hu B, Prashad M, Prasad K. Angew. Chem. Int. Ed. 2009; 48: 172
- 10b Li H.-H, Dong D.-J, Jin Y.-H, Tian S.-K. J. Org. Chem. 2009; 74: 9501
- 10c Garima, Srivastava VP, Yadav LD. S. Tetrahedron Lett. 2011; 52: 4622
- 10d Li X, Xu X, Tang Y. Org. Biomol. Chem. 2013; 11: 1739
- 10e Xie P, Wang J, Liu Y, Fan J, Wo X, Fu W, Sun Z, Loh T.-P. Nat. Commun. 2018; 9: 1321
- 11a Basavaiah D, Tilak RN. New J. Chem. 2018; 42: 14036
- 11b Kaur K, Namboothiri IN. N. Chimia 2012; 66: 913
- 11c Basavaiah D, Reddy BS, Badsara BS. Chem. Rev. 2010; 110: 5447
- 11d Declerck V, Martinez J, Lamaty F. Chem. Rev. 2009; 109: 1
- 11e Singh V, Batra S. Tetrahedron 2008; 64: 4511
- 11f Basavaiah D, Rao KV, Reddy RJ. Chem. Soc. Rev. 2007; 36: 1581
- 12a Reddy RJ, Kumar JJ, Kumari AH, Krishna GR. Adv. Synth. Catal. 2020; 362: 1317
- 12b Reddy RJ, Waheed M, Krishna GR. Org. Biomol. Chem. 2020; 18: 3243
- 12c Reddy RJ, Waheed M, Kumar JJ. RSC Adv. 2018; 8: 40446
- 12d Reddy RJ, Waheed M, Karthik T, Shankar A. New J. Chem. 2018; 42: 980
- 12e Reddy RJ, Kumari AH. RSC Adv. 2021; 11: 9130
- 12f Reddy RJ, Kumari AH, Kumar J. J. Org. Biomol. Chem. 2021;
- 13a Subramanian H, Moorthy R, Sibi MP. Angew. Chem. Int. Ed. 2014; 53: 13660
- 13b Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
- 14a Basavaiah D, Reddy KR, Kumaragurubaran N. Nat. Protoc. 2007; 2: 2665
- 14b Basavaiah D. J. Sci. Res. Banaras Hindu Univ. 2019; 63: 169
- 15a Basavaiah D, Muthukumaran K, Sreenivasulu B. Synthesis 2000; 545
- 15b Manson PH, Esmile ND. Tetrahedron 1994; 41: 12001
- 15c Shanmugam P, Singh PR. Synlett 2001; 1314 ; see also ref. 9a
- 16a Poshkus AC, Herweh JE, Magnotta FA. J. Org. Chem. 1963; 28: 2766
- 16b Kirihara M, Naito S, Nishimura Y, Ishizuka Y, Iwai T, Takeuchi H, Ogata T, Hanai H, Kinoshita Y, Kishida M, Yamazaki K, Noguchi T, Yamashoji S. Tetrahedron 2014; 70: 2464
- 16c Silva-Cuevas C, Perez-Arrieta C, Polindara-García LA, Lujan-Montelongo JA. Tetrahedron Lett. 2017; 58: 2244
Recent leading articles:
For homolytic cleavage of thiosulfonates in EPR studies, see:
For thiosulfonylation of alkenes and alkynes, see:
For sulfonylation of MBH adducts using sodium sulfinates, see:
For sulfonylation of MBH adducts using other sulfonyl agents, see:
For selected reviews on MBH reaction, see:
For reviews of thiyl radicals in organic synthesis, see:
The mixture of Z/E isomers of allyl sulfones was based on the corresponding MBH allyl bromides, see:
In the 1H NMR spectra of aryl substituted products, the vinylic proton cis- to the ester group appears around δ = 7.90 ppm and around δ = 6.85 ppm for the Z- and E-isomers, respectively. Similarly, the vinylic proton of the major Z-isomer appears at around δ = 7.09 ppm and a minor peak for the E-isomer appears at around δ = 6.08 ppm for alkyl substituted products. See: