RSS-Feed abonnieren
DOI: 10.1055/a-1453-0964
White Sage (Salvia apiana)–a Ritual and Medicinal Plant of the Chaparral: Plant Characteristics in Comparison with Other Salvia Species
Gefördert durch: European Union through the European Social Fund under the Operational Programme Knowledge Education Development 2014–2020 POWR.03.02.00-00-I014/17-00Abstract
Salvia apiana, commonly known as white sage, is an aromatic evergreen subshrub of the chaparral, commonly found in coastal plains in California and Baja California. It has been traditionally used by the Chumash people as a ritual and medicinal plant and used as a calmative, a diuretic, and a remedy for the common cold. However, until recently, relatively little has been known about the composition and biological activity of white sage. Phytochemical studies on S. apiana revealed the presence of substantial amounts of essential oil, accompanied by a variety of triterpenes, C23 terpenoids, diterpenes, and flavonoids. Extracts of the plant have been shown to exhibit antioxidative, antimicrobial, and cytotoxic effects. The influence of white sage constituents on the nervous system, including GABA, opioid, and cannabinoid receptors, has also been documented. The review aimed to compile information on the taxonomy, botany, chemical composition, and biological activities of S. apiana. White sage was compared with other representatives of the genus in terms of chemical composition. The differences and similarities between S. apiana and other sage species were noted and discussed in the context of their therapeutic applications. Reports on ethnomedicinal uses of white sage were confronted with reports on chemistry, bioactivity, and bioavailability of S. apiana constituents. Finally, a critical assessment of the available data was made and perspectives for the use of white sage preparations in modern phytomedicine were discussed.
Key words
Salvia apiana - Lamiaceae - terpenoids - chemical composition - ethnomedicine - pharmacological activitySupporting Information
- Supporting Information
The detailed composition of essential oils in different sage species is provided as Supporting information.
Publikationsverlauf
Eingereicht: 01. Dezember 2020
Angenommen nach Revision: 16. März 2021
Artikel online veröffentlicht:
22. April 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Walker JB, Drew BT, Sytsma KJ. Unraveling species relationships and diversification within the iconic California floristic province sages (Salvia subgenus Audibertia, Lamiaceae). Syst Bot 2015; 40: 826-844 doi:10.1600/036364415X689285
- 2 Timbrook J. Ethnobotany of Chumash indians, California, based on collections by John P. Harrington. Econ Bot 1990; 44: 236-253 doi:10.1007/BF02860489
- 3 Timbrook J. Chia and the Chumash: a reconsideration of sage seeds in Southern California. J Calif Gt Basin Anthropol 1986; 8: 50-64
- 4 Adams JD, Garcia C. The advantages of traditional Chumash healing. Evid Based Complement Altern Med 2005; 2: 19-23 doi:10.1093/ecam/neh072
- 5 Takhtajan A. Flowering Plants. Second ed. Dordrecht: Springer Netherlands; 2009
- 6 Will M, Claßen-Bockhoff R. Time to split Salvia s.l. (Lamiaceae)–new insights from Old World Salvia phylogeny. Mol Phylogenet Evol 2017; 109: 33-58 doi:10.1016/j.ympev.2016.12.041
- 7 Greene EL. On certain Californian Labiatae. Pittonia 1892; 2: 233-236
- 8 Bentham G. Labiatarum Genera et Species: or, a Description of the Genera and Species of Plants of the Order Labiatae; with their general History, Characters, Affinities, and geographical Distribution. London: James Ridgway and Sons, Piccadilly; 1836
- 9 Briquet J. Questions de nomenclature. Bull LʼHerbier Boissier 1894; 2: 49-88
- 10 Jepson WL. Northernmost stations for two common Californian Trees. Muhlenbergia 1908; 3: 144
- 11 Averett DE. Salvia apiana. Jepson Flora Proj Jepson eFlora 2012. Accessed December 2, 2018 at: http://ucjeps.berkeley.edu/eflora/eflora_display.php?tid=43038
- 12 Munz PA. The Southern California species of Salvia . Bull South Calif Acad Sci 1927; 26: 17-29
- 13 Walker JB, Sytsma KJ, Treutlein J, Wink M. Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae . Am J Bot 2004; 91: 1115-1125 doi:10.3732/ajb.91.7.1115
- 14 Walker JB, Sytsma KJ. Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever. Ann Bot 2007; 100: 375-391 doi:10.1093/aob/mcl176
- 15 Will M, Claßen-Bockhoff R. Why Africa matters: evolution of old world Salvia (Lamiaceae) in Africa. Ann Bot 2014; 114: 61-83 doi:10.1093/aob/mcu081
- 16 Hu GX, Takano A, Drew BT, Liu ED, Soltis DE, Soltis PS, Peng H, Xiang CL. Phylogeny and staminal evolution of Salvia (Lamiaceae, Nepetoideae) in East Asia. Ann Bot 2018; 122: 649-668 doi:10.1093/aob/mcy104
- 17 Kriebel R, Drew BT, Drummond CP, González-Gallegos JG, Celep F, Mahdjoub MM, Rose JP, Xiang CL, Hu GX, Walker JB, Lemmon EM, Lemmon AR, Sytsma KJ. Tracking temporal shifts in area, biomes, and pollinators in the radiation of Salvia (sages) across continents: leveraging anchored hybrid enrichment and targeted sequence data. Am J Bot 2019; 106: 573-597 doi:10.1002/ajb2.1268
- 18 Drew BT, Sytsma KJ. Phylogenetics, biogeography, and staminal evolution in the tribe Mentheae (Lamiaceae). Am J Bot 2012; 99: 933-953 doi:10.3732/ajb.1100549
- 19 Montalvo AM, Riordan EC, Beyers JL. Plant profile for Salvia apiana, Updated 2017. Native plant recommendations for Southern California Ecoregions. Riverside, CA: Riverside-Corona Resource Conservation District and U. S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. Accessed April 5, 2021 at: https://www.fs.usda.gov/treesearch/pubs/57258
- 20 Grant KA, Grant V. Mechanical isolation of Salvia apiana and Salvia mellifera (Labiatae). Evolution (N Y) 1964; 18: 196-212 doi:10.2307/2406392
- 21 Ott D, Hühn P, Claßen-Bockhoff R. Salvia apiana–a carpenter bee flower?. Flora 2016; 221: 82-91 doi:10.1016/j.flora.2015.12.008
- 22 Epling C, Lewis H, Raven PH. Chromosomes of Salvia: section Audibertia . Aliso A J Syst Evol Bot 1962; 5: 217-221
- 23 Jepson WL. S. apiana. . In: A Flora of California, Vol. 3, Part 2. Berkeley: Jepson Herbarium and Library, University of California; 1943: 407-408
- 24 Epling C. The Californian Salvias. A review of Salvia, section Audibertia . Ann Missouri Bot Gard 1938; XXV: 95-188
- 25 Epling C. Natural hybridization of Salvia apiana and S. mellifera . Evolution (NY) 1947; 1: 69-78 doi:10.2307/2405405
- 26 Montalvo AM. Salvia apiana Jepson. In: Francis JK. ed. Wildland Shrubs of the United States and its Territories: Thamnic Descriptions. General Technical Report IITF-GTR-26, Vol. 1. San Juan: U. S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry and Rocky Mountain Research Station; 2004: 671-675 Accessed April 5 2021 at: https://www.fs.usda.gov/treesearch/pubs/27005
- 27 Boyd S. Vascular flora of the Liebre Mountains, western Transverse Ranges, California. Aliso A J Syst Evol Bot 1999; 18: 93-139 doi:10.5642/aliso.19991802.15
- 28 Adlof CC. How does harvesting impact white sage (Salvia apiana) as a cultural resource in Southern California? [Dissertation]. Northridge: California State University; 2015
- 29 Riaño D, Chuvieco E, Ustin S, Zomer R, Dennison P, Roberts D, Salas J. Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains. Remote Sens Environ 2002; 79: 60-71 doi:10.1016/S0034-4257(01)00239-5
- 30 Stevens M, OʼBrien B. Plant guide: white sage. 2003 Accessed November 30, 2020 at: https://plants.usda.gov/plantguide/pdf/cs_saap2.pdf
- 31 Leopold S. What is going on with white sage?. J Med Plant Conserv 2019; 2019: 3-5
- 32 Calscape California Native Plant Society. White sage, Salvia apiana . Accessed August 16, 2020 at: https://www.calscape.org/Salvia-apiana-(White-Sage)?srchcr=sc5f393fa471655
- 33 Joubert E, Joubert ME, Bester C, de Beer D, De Lange JH. Honeybush (Cyclopia spp.): from local cottage industry to global markets–the catalytic and supporting role of research. South African J Bot 2011; 77: 887-907 doi:10.1016/j.sajb.2011.05.014
- 34 Kokotkiewicz A, Luczkiewicz M, Kowalski W, Badura A, Piekus N, Bucinski A. Isoflavone production in Cyclopia subternata Vogel (honeybush) suspension cultures grown in shake flasks and stirred-tank bioreactor. Appl Microbiol Biotechnol 2013; 97: 8467-8477 doi:10.1007/s00253-013-5099-z
- 35 Kokotkiewicz A, Bucinski A, Luczkiewicz M. Xanthone, benzophenone and bioflavonoid accumulation in Cyclopia genistoides (L.) Vent. (honeybush) shoot cultures grown on membrane rafts and in a temporary immersion system. Plant Cell Tissue Organ Cult 2015; 120: 373-378 doi:10.1007/s11240-014-0586-1
- 36 Kokotkiewicz A, Luczkiewicz M, Hering A, Ochockab R, Gorynskic K, Bucinskic A, Sowinski P. Micropropagation of Cyclopia genistoides, an endemic South African plant of economic importance. Z Naturforsch C J Biosci 2012; 67: 65-76 doi:10.1515/znc-2012-1-209
- 37 DʼAmelia V, Ruggiero A, Tranchida-Lombardo V, Leone A, Tucci M, Docimo T. Biosynthesis of Salvia specialized Metabolites and Biotechnological Approaches to increase their Production. In: Georgiev V, Pavlov A, eds. Salvia Biotechnology. Cham: Springer International Publishing; 2017: 241-270
- 38 Taşçioǧlu AB, Taşçioǧlu AO. Wichasha wakan: medicine man (Lakota Sioux) Native American medicine and the role of the medicine man. Turk Neurosurg 2002; 12: 1-8
- 39 Adams JD, Garcia C. Spirit, mind and body in Chumash healing. Evid Based Complement Alternat Med 2005; 2: 459-463 doi:10.1093/ecam/neh130
- 40 Adams JD, Garcia C, Lien EJ. A comparison of Chinese and American Indian (Chumash) medicine. Evid Based Complement Alternat Med 2010; 7: 219-225 doi:10.1093/ecam/nem188
- 41 Adams JD, Garcia C. Palliative care among Chumash people. Evid Based Complement Alternat Med 2005; 2: 143-147 doi:10.1093/ecam/neh090
- 42 Adams JD, Garcia C. Womenʼs health among the Chumash. Evid Based Complement Alternat Med 2006; 3: 125-131 doi:10.1093/ecam/nek021
- 43 Dayton WA. Important Western browse plants. Washington, D.C.: U. S. Department of Agriculture; 1931: 141 Accessed April 5 2021 at: https://books.google.pl/books?id=FqooAAAAYAAJ&printsec=frontcover&hl=pl#v=onepage&q&f=false
- 44 Dentali SJ. Potential antiinfective agents from Eriodictyon angustifolium Nutt. and Salvia apiana Jeps. [Dissertation]. Ann Arbor: University of Arizona; 1991
- 45 Muller WH, Muller CH. Volatile growth inhibitors produced by Salvia species. Bull Torrey Bot Club 1964; 91: 327-330 doi:10.2307/2483297
- 46 Borek TT, Hochrein JM, Irwin AN. Composition of the essential Oils from Rocky Mountain Juniper (Juniperus scopulorum), big Sagebrush (Artemisia tridentata), and white Sage (Salvia apiana). Albuquerque, NM, and Livermore, CA: Sandia National Laboratories; 2003
- 47 Takeoka GR, Hobbs C, Park BS. Volatile constituents of the aerial parts of Salvia apiana Jepson. J Essent Oil Res 2010; 22: 241-244 doi:10.1080/10412905.2010.9700314
- 48 Perry NB, Anderson RE, Brennan NJ, Douglas MH, Heaney AJ, McGimpsey JA, Smallfield BM. Essential oils from Dalmatian sage (Salvia officinalis L.): variations among individuals, plant parts, seasons, and sites. J Agric Food Chem 1999; 47: 2048-2054 doi:10.1021/jf981170m
- 49 Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J 2008; 23: 213-226 doi:10.1002/ffj.1875
- 50 Giffen JE, Lesiak AD, Dane AJ, Cody RB, Musah RA. Rapid species-level identification of Salvias by chemometric processing of ambient ionisation mass spectrometry-derived chemical profiles. Phytochem Anal 2017; 28: 16-26 doi:10.1002/pca.2639
- 51 Emboden WA, Lewis H. Terpenes as taxonomic characters in Salvia section Audibertia . Brittonia 1967; 19: 152 doi:10.2307/2805272
- 52 Giannouli A, Kintzios SE. Essential Oils of Salvia spr: Examples of intraspecific and seasonal Variation. In: Kintzios SE. ed. SAGE The Genus Salvia . Amsterdam: Harwood Academic Publishers; 2000: 69-79
- 53 Grdiša M, Jug-Dujaković M, Lončarić M, Carović-Stanko K, Ninčević T, Liber Z, Radosavljevic I, Šatović Z. Dalmatian Sage (Salvia officinalis L.): A review of biochemical contents, medical properties and genetic diversity. Agric Conspec Sci 2015; 80: 69-78
- 54 Ali A, Tabanca N, Demirci B, Blythe E, Ali Z, Baser K, Husnu C, Khan I. Chemical composition and biological activity of four Salvia essential oils and individual compounds against two species of mosquitoes. J Agric Food Chem 2015; 63: 447-456 doi:10.1021/jf504976f
- 55 Raal A, Orav A, Arak E. Composition of the essential oil of Salvia officinalis L. from various European countries. Nat Prod Res 2007; 21: 406-411 doi:10.1080/14786410500528478
- 56 European Medicines Agency. Public statement on the use of herbal medicinal products containing thujone. EMA/HMPC/732886/2010 Rev. 1. 2012 Accessed April 12, 2021 at: https://www.ema.europa.eu/en/documents/scientific-guideline/public-statement-use-herbal-medicinal-products-containing-thujone-revision-1_en.pdf
- 57 European Medicines Agency. Assessment report on Salvia officinalis L., folium and Salvia officinales L., aetheroleum. EMA/HMPC/150801/2015. 2016 Accessed April 12, 2021 at: https://www.ema.europa.eu/en/documents/herbal-report/draft-assessment-report-salvia-officinalis-l-folium-salvia-officinalis-l-aetheroleum_en.pdf
- 58 Baricevic D, Bartol TV. Pharmacology 11. The biological/pharmacological Activity of the Salvia Genus. In: Kintzios SE. ed. SAGE The Genus Salvia . Amsterdam: Harwood Academic Publishers; 2000: 143-184
- 59 Ulubelen A. III. Chemical Constituents 4. Terpenoids in the Genus Salvia . In: Kintzios SE. ed. SAGE The Genus Salvia . Amsterdam: Harwood Academic Publishers; 2000: 55-68
- 60 Bisio A, Pedrelli F, DʼAmbola M, Labanca F, Schito A, Govaerts R, Tommasi N, Milella L. Quinone diterpenes from Salvia species: chemistry, botany, and biological activity. Phytochem Rev 2019; 18: 665-842 doi:10.1007/s11101-019-09633-z
- 61 Luis JG, Lahlou EH, Andres LS, Sood GHN, Ripoll MM. Apiananes: C23 terpenoids with a new type of skeleton from Salvia apiana . Tetrahedron Lett 1996; 37: 4213-4216
- 62 González AG, Aguiar ZE, Grillo TA, Luis JG. Diterpenes and diterpene quinones from the roots of Salvia apiana . Phytochemistry 1992; 31: 1691-1695 doi:10.1016/0031-9422(92)83130-Q
- 63 Abreu ME, Müller M, Alegre L, Munné-Bosch S. Phenolic diterpene and α-tocopherol contents in leaf extracts of 60 Salvia species. J Sci Food Agric 2008; 88: 2648-2653 doi:10.1002/jsfa.3384
- 64 Srivedavyasasri R, Hayes T, Ross SA. Phytochemical and biological evaluation of Salvia apiana . Nat Prod Res 2017; 31: 2058-2061 doi:10.1080/14786419.2016.1269096
- 65 Pettit GR, Klinger H, Jorgensen NON, Occolowitz J. Steroids and related natural products–XXVII. Salvia apiana . Phytochemistry 1966; 5: 301-309 doi:10.1016/S0031-9422(00)82144-5
- 66 Shyamal KJ, Gorai D, Roy R. Salvia gensu and triterpenoids. Int J Pharm Sci Res 2016; 7: 4710-4732 doi:10.13040/IJPSR.0975-8232.7(12).4710-32
- 67 Luis JG, Lahlou EH, Andrés LS. Hassananes: C23terpenoids with a new type of skeleton from Salvia apiana Jeps. Tetrahedron 1996; 52: 12309-12312 doi:10.1016/0040-4020(96)00717-X
- 68 Yang J, Huang SX, Zhao QS. Structure revision of hassananes with use of quantum mechanical 13 C NMR chemical shifts and UV-Vis absorption spectra. J Phys Chem A 2008; 112: 12132-12139 doi:10.1021/jp8072415
- 69 Zhang X, Li Z, Yong H, Xie Z. Biomimetic syntheses of C 23 terpenoids: structural revision of salyunnanin A and confirmation of hassanane. Org Chem Front 2018; 5: 3469-3475 doi:10.1039/C8QO00772A
- 70 Lu Y, Yeap Foo L. Polyphenolics of Salvia–a review. Phytochemistry 2002; 59: 117-140 doi:10.1016/S0031-9422(01)00415-0
- 71 Vulganová K, Maliar T, Maliarová M, Nemeček P, Viskupičová J, Balážová A, Sokol J. Biologically valuable components, antioxidant activity and proteinase inhibition activity of leaf and callus extracts of Salvia sp. Nov Biotechnol Chim 2019; 18: 25-36 doi:10.2478/nbec-2019-0004
- 72 Afonso AF, Pereira OR, Fernandes ÂSF, Calhelha RC, Silva AMS, Ferreira ICFR, Cardoso SM. The health-benefits and phytochemical profile of Salvia apiana and Salvia farinacea var. Victoria Blue decoctions. Antioxidants 2019; 8: 241 doi:10.3390/antiox8080241
- 73 Hidalgo PJ, Ubera JL, Tena MT, Valcárcel M. Determination of the carnosic acid content in wild and cultivated Rosmarinus officinalis . J Agric Food Chem 1998; 46: 2624-2627 doi:10.1021/jf970974j
- 74 Saeed MEM, Meyer M, Hussein A, Efferth T. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells. J Ethnopharmacol 2016; 186: 209-223 doi:10.1016/j.jep.2016.04.005
- 75 Akaberi M, Mehri S, Iranshahi M. Multiple pro-apoptotic targets of abietane diterpenoids from Salvia species. Fitoterapia 2015; 100: 118-132 doi:10.1016/j.fitote.2014.11.008
- 76 Bonito MC, Cicala C, Marcotullio MC, Maione F, Nicola M. Biological activity of bicyclic and tricyclic diterpenoids from Salvia Species of immediate pharmacological and pharmaceutical interest. Nat Prod Commun 2011; 6: 1934578X1100600 doi:10.1177/1934578X1100600839
- 77 Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler jr. VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28: 603-661 doi:10.1128/CMR.00134-14
- 78 Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 2019; 43: 123-144 doi:10.1093/femsre/fuy043
- 79 Hakansson AP, Orihuela CJ, Bogaert D. Bacterial-host interactions: physiology and pathophysiology of respiratory infection. Physiol Rev 2018; 98: 781-811 doi:10.1152/physrev.00040.2016
- 80 Blanchette KA, Orihuela CJ. Future perspective on host-pathogen interactions during bacterial biofilm formation within the nasopharynx. Future Microbiol 2012; 7: 227-239 doi:10.2217/fmb.11.160
- 81 Jefferson KK. What drives bacteria to produce a biofilm?. FEMS Microbiol Lett 2004; 236: 163-173 doi:10.1016/j.femsle.2004.06.005
- 82 Reffuveille F, Josse J, Vallé Q, Mongaret C, Gangloff SC. Staphylococcus aureus Biofilms and their Impact on the medical Field. In: Enany S, Alexander LC, eds. The Rise of Virulence and antibiotic Resistance in Staphylococcus aureus . London: InTech;; 2017
- 83 Bernardes WA, Lucarini R, Tozatti MG, Souza MGM, Silva MLA, da Silva Filho AA, Martins CHG, Crotti AEM, Pauletti PM, Groppo M, Cunha WR. Antimicrobial Activity of Rosmarinus officinalis against oral pathogens: relevance of carnosic acid and carnosol. Chem Biodivers 2010; 7: 1835-1840 doi:10.1002/cbdv.200900301
- 84 Romo Vaquero M, García Villalba R, Larrosa M, Yáñez-Gascón MJ, Fromentin E, Flanagan J, Roller M, Tomás-Barberán FA, Espín JC, García-Conesa MT. Bioavailability of the major bioactive diterpenoids in a rosemary extract: metabolic profile in the intestine, liver, plasma, and brain of Zucker rats. Mol Nutr Food Res 2013; 57: 1834-1846 doi:10.1002/mnfr.201300052
- 85 Doolaege EHA, Raes K, De Vos F, Verhé R, De Smet S. Absorption, distribution and elimination of carnosic acid, a natural antioxidant from Rosmarinus officinalis, in rats. Plant Foods Hum Nutr 2011; 66: 196-202 doi:10.1007/s11130-011-0233-5
- 86 Zampini IC, Arias ME, Cudmani N, Zampini IC, Arias ME, Cudmani N, Ordóñez RM, Isla MI, Moreno S. Antibacterial potential of non-volatile constituents of Rosmarinus officinalis against 37 clinical isolates of multidrug-resistant bacteria. Bol Latinoam Caribe Plant Med Aromat 2013; 2: 201-208
- 87 Van Vuuren S, Holl D. Antimicrobial natural product research: a review from a South African perspective for the years 2009–2016. J Ethnopharmacol 2017; 208: 236-252 doi:10.1016/j.jep.2017.07.011
- 88 Allison BJ, Allenby MC, Bryant SS, Min JE, Hieromnimon M, Joyner PM. Antibacterial activity of fractions from three Chumash medicinal plant extracts and in vitro inhibition of the enzyme enoyl reductase by the flavonoid jaceosidin. Nat Prod Res 2017; 31: 707-712 doi:10.1080/14786419.2016.1217201
- 89 Sadgrove NJ, Jones GL. From petri dish to patient: bioavailability estimation and mechanism of action for antimicrobial and immunomodulatory natural products. Front Microbiol 2019; 10: 1-26 doi:10.3389/fmicb.2019.02470
- 90 Cordova-Guerrero I, Aragon-Martinez OH, Díaz-Rubio L, Santiago FC, Serafín-Higuera NA, Pozos-Guillén A, Soto-Castro TA, Martinez-Morales F, Isiordia-Espinoza M. Actividad antibacteriana y antifúngica de un extracto de Salvia apiana frente a microorganismos de importancia clínica. Rev Argent Microbiol 2016; 48: 217-221 doi:10.1016/j.ram.2016.05.007
- 91 Anastasiou C, Buchbauer G. Essential oils as immunomodulators: some examples. Open Chem 2017; 15: 104-114 doi:10.1515/chem-2017-0037
- 92 Valdivieso-Ugarte M, Gomez-Llorente C, Plaza-Díaz J, Gil A. Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: a systematic review. Nutrients 2019; 11: 1-29 doi:10.3390/nu11112786
- 93 Peterfalvi A, Miko E, Nagy T, Reger B, Simon D, Miseta A, Czéh B, Szereday L. Much more than a pleasant scent: a review on essential oils supporting the immune system. Molecules 2019; 24: 1-16 doi:10.3390/molecules24244530
- 94 Tschiggerl C, Bucar F. Investigation of the volatile fraction of rosemary infusion extracts. Sci Pharm 2010; 78: 483-492 doi:10.3797/scipharm.1004-23
- 95 Radulescu V, Chiliment S, Oprea E. Capillary gas chromatography-mass spectrometry of volatile and semi-volatile compounds of Salvia officinalis . J Chromatogr A 2004; 1027: 121-126 doi:10.1016/j.chroma.2003.11.046
- 96 Galan DM, Ezeudu NE, Garcia J, Geronimo CA, Berry NM, Malcolm BJ. Eucalyptol (1, 8-cineole): an underutilized ally in respiratory disorders?. J Essent Oil Res 2020; 32: 103-110 doi:10.1080/10412905.2020.1716867
- 97 Juergens LJ, Worth H, Juergens UR. New perspectives for mucolytic, anti-inflammatory and adjunctive therapy with 1,8-Cineole in COPD and asthma: review on the new therapeutic approach. Adv Ther 2020; 37: 1737-1753 doi:10.1007/s12325-020-01279-0
- 98 Juergens UR, Stöber M, Vetter H. Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1.8-cineole) in human blood monocytes in vitro . Eur J Med Res 1998; 3: 508-510
- 99 Juergens UR, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir Med 2003; 97: 250-256 doi:10.1053/rmed.2003.1432
- 100 Bastos VPD, Gomes AS, Lima FJB, Brito TS, Soares PMG, Pinho JPM, Silva CS, Santos AA, Souza MHLP, Magalhães PJC. Inhaled 1,8-cineole reduces inflammatory parameters in airways of ovalbumin-challenged guinea pigs. Basic Clin Pharmacol Toxicol 2011; 108: 34-39 doi:10.1111/j.1742-7843.2010.00622.x
- 101 Juergens UR, Engelen T, Racké K, Stöber M, Gillissen A, Vetter H. Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulm Pharmacol Ther 2004; 17: 281-287 doi:10.1016/j.pupt.2004.06.002
- 102 Müller J, Greiner JFW, Zeuner M, Brotzmann V, Schäfermann J, Wieters F, Widera D, Sudhoff H, Kaltschmidt B, Kaltschmidt C. 1,8-Cineole potentiates IRF3-mediated antiviral response in human stem cells and in an ex vivo model of rhinosinusitis. Clin Sci 2016; 130: 1339-1352 doi:10.1042/CS20160218
- 103 Sudhoff H, Klenke C, Greiner JFW, Müller J, Brotzmann V, Ebmeyer J, Kaltschmidt B, Kaltschmidt C. 1,8-Cineol reduces mucus-production in a novel human ex vivo model of late rhinosinusitis. PLoS One 2015; 10: 1-12 doi:10.1371/journal.pone.0133040
- 104 Perry N, Howes MJ, Houghton P, Perry E. Why Sage may be a wise Remedy: Effects of Salvia on the nervous System. In: Kintzios SE. ed. SAGE The Genus Salvia . Amsterdam: Harwood Academic Publishers; 2000: 207-223
- 105 Chebib M, Hanrahan JR, Mewett KN, Duke RT, Johnston G. Ionotropic GABA Receptors as therapeutic Targets for Memory and Sleep Disorders. In: Wustrow D, Arbor A, eds. Annual Reports in medicinal Chemistry. Amsterdam: Academic Press; 2004: 13-23
- 106 Rutherford DM, Nielsen MPC, Hansen SK, Witt MR, Bergendorff O, Sterner O. Isolation and identification from Salvia officinalis of two diterpenes which inhibit t-butylbicyclophosphoro[35S]thionate binding to chloride channel of rat cerebrocortical membranes in vitro . Neurosci Lett 1992; 135: 224-226 doi:10.1016/0304-3940(92)90441-9
- 107 Khan I, Karim N, Ahmad W, Abdelhalim A, Chebib M. GABA-A receptor modulation and anticonvulsant, anxiolytic, and antidepressant activities of constituents from Artemisia indica Linn. Evidence-Based Complement Altern Med 2016; 2016: 1-12 doi:10.1155/2016/1215393
- 108 Lee CM, Wong HNC, Chui KY, Choang TF, Hon PM, Chang HM. Miltirone, a central benzodiazepine receptor partial agonist from a Chinese medicinal herb Salvia Miltiorrhiza . Neurosci Lett 1991; 127: 237-241 doi:10.1016/0304-3940(91)90802-Z
- 109 Kavvadias D, Monschein V, Sand P, Riederer P, Schreier P. Constituents of Sage (Salvia officinalis) with in vitro affinity to human brain benzodiazepine receptor. Planta Med 2003; 69: 113-117 doi:10.1055/s-2003-37712
- 110 Abdelhalim A, Chebib M, Aburjai T, Johnston GAR, Hanrahan JR. GABAA Receptor modulation by compounds isolated from Salvia triloba L. Adv Biol Chem 2014; 04: 148-159 doi:10.4236/abc.2014.42019
- 111 Ceremuga TE, McClellan CB, Green XC, Heber B, Jolly M, Malone T, Schaaf J, Isaacs A. Investigation of the anxiolytic and antidepressant effects of eucalyptol (1,8-Cineole), a compound from eucalyptus, in the adult male Sprague-Dawley rat. AANA 2017; 85: 277-284
- 112 Dougnon G, Ito M. Inhalation administration of the bicyclic ethers 1,8- and 1,4-cineole prevent anxiety and depressive-like behaviours in mice. Molecules 2020; 25: 1884 doi:10.3390/molecules25081884
- 113 Agatonovic-Kustrin S, Morton DW. Essential Oils and cognitive Performance. In: Atta-ur-Rahman, ed. Frontiers in natural Product Chemistry: Volume 4. Sharjah, UAE: Bentham Science Publishers;; 2018: 91-118
- 114 Moss M, Oliver L. Plasma 1,8-cineole correlates with cognitive performance following exposure to rosemary essential oil aroma. Ther Adv Psychopharmacol 2012; 2: 103-113 doi:10.1177/2045125312436573
- 115 Li R, Morris-Natschke SL, Lee KH. Clerodane diterpenes: sources, structures, and biological activities. Nat Prod Rep 2016; 33: 1166-1226 doi:10.1039/C5NP00137D
- 116 Hayes T. Terpenes and flavonoids from Salvia apiana and their affinities to cannabinoid and opioid receptors [Dissertation]. Oxford: University of Mississippi; 2016
- 117 Santos FA, Rao VSN. Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phyther Res 2000; 14: 240-244 doi:10.1002/1099-1573(200006)14:4<240::aid-ptr573>3.0.co;2-x
- 118 Takaishi M, Fujita F, Uchida K, Sawada Shimizu M, Hatai Uotsu C, Shimizu M, Tominaga M. 1,8-Cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1. Mol Pain 2012; 8: 86 doi:10.1186/1744-8069-8-86
- 119 Goszcz K, Duthie GG, Stewart D, Leslie SJ, Megson IL. Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response?. Br J Pharmacol 2017; 174: 1209-1225 doi:10.1111/bph.13708
- 120 Hrelia S, Angeloni C. New mechanisms of action of natural antioxidants in health and disease. Antioxidants 2020; 9: 1-5 doi:10.3390/antiox9040344
- 121 Muller CH. Inhibitory terpenes volatilized from Salvia shrubs. Bull Torrey Bot Club 1965; 92: 38 doi:10.2307/2483311
- 122 González-Vallinas M, Molina S, Vicente G, Zarza V, Martín-Hernández R, García-Risco MR, Fornari T, Reglero T, de Molin AR. Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of rosemary diterpenes in colon and pancreatic cancer. PLoS One 2014; 9: 1-10 doi:10.1371/journal.pone.0098556
- 123 Borek TT, Hochrien JM, Irwin AN. Composition of the essential oil of white sage, Salvia apiana . Flavour Fragr J 2006; 21: 571-572 doi:10.1002/ffj.1618
- 124 Craft JD, Satyal P, Setzer WN. The chemotaxonomy of common sage (Salvia officinalis) based on the volatile constituents. Medicines 2017; 4: 47 doi:10.3390/medicines4030047
- 125 Lakušić BS, Ristić MS, Slavkovska VN, Lakusic D. Variations in essential oil yields and compositions of Salvia officinalis (Lamiaceae) at different developmental stages. Bot Serbica 2013; 37: 127-140
- 126 Jug-Dujaković M, Ristić M, Pljevljakušić D, Dajić-Stevanović Z, Liber Z, Hančević K, Radić T, Šatović Z. High diversity of indigenous populations of dalmatian sage (Salvia officinalis L.) in essential-oil composition. Chem Biodivers 2012; 9: 2309-2323 doi:10.1002/cbdv.201200131
- 127 Couladis M, Tzakou O, Mimica-Dukić N, Dajić-Stevanović Z, Liber Z, Hančević K, Radić T, Šatović Z. Essential oil of Salvia officinalis L. from Serbia and Montenegro. Flavour Fragr J 2002; 17: 119-126 doi:10.1002/ffj.1065
- 128 Tucker AO, Maciarello MJ. Essential oils of cultivars of Dalmatian sage (Salvia officinalis L.). J Essent Oil Res 1990; 2: 139-144 doi:10.1080/10412905.1990.9697844
- 129 Sharopov FS, Setzer WN. The essential oil of Salvia sclarea L. from Tajikistan. Rec Nat Prod 2012; 6: 75-79
- 130 Souleles C, Argyriadou N. Constituents of the essential oil of Salvia sclarea growing wild in Greece. Pharm Biol 1997; 35: 218-220 doi:10.1076/phbi.35.3.218.13295
- 131 Safaei-Ghomi J, Masoomi R, Jookar Kashi F, Batooli H. Bioactivity of the essential oil and methanol extracts of flowers and leaves of Salvia sclarea L. from Central Iran. J Essent Oil-Bearing Plants 2016; 19: 885-896 doi:10.1080/0972060X.2016.1195292
- 132 Dzumayev KK, Tsibulskaya IA, Zenkevich IG, Tkachenko KG, Satzyperova IF. Essential oils of Salvia sclarea L. produced from plants grown in southern Uzbekistan. J Essent Oil Res 1995; 7: 597-604 doi:10.1080/10412905.1995.9700513
- 133 Usano-Alemany J, Herraiz-Peñalver D, Cuadrado J, Díaz S, Santa-Cruz M, Palá-Paúl J. Seasonal variation of the essential oils of Salvia lavandulifolia: antibacterial activity. J Essent Oil Bear Plants 2012; 15: 195-203 doi:10.1080/0972060X.2012.10644036
- 134 Elshafie HS, Aliberti L, Amato M, De Feo V, Camele I. Chemical composition and antimicrobial activity of chia (Salvia hispanica L.) essential oil. Eur Food Res Technol 2018; 244: 1675-1682 doi:10.1007/s00217-018-3080-x
- 135 Ahmed M, Ting IP, Scora RW. Leaf oil composition of Salvia hispanica L. from three geographical areas. J Essent Oil Res 1994; 6: 223-228 doi:10.1080/10412905.1994.9698368
- 136 De Martino L, Roscigno G, Mancini E, De Falco E, De Feo V. Chemical composition and antigerminative activity of the essential oils from five Salvia species. Molecules 2010; 15: 735-746 doi:10.3390/molecules15020735
- 137 Liu AD, Cai GH, Wei YY, Yu JP, Chen J, Yang J, Wang X, Che YW, Chen JZ, Wu SX. Anxiolytic effect of essential oils of Salvia miltiorrhiza in rats. Int J Clin Exp Med 2015; 8: 12756-12764
- 138 Li B, Zhang C, Peng L, Liang Z, Yan X, Zhu Y, Liu Y. Comparison of essential oil composition and phenolic acid content of selected Salvia species measured by GC-MS and HPLC methods. Ind Crops Prod 2015; 69: 329-334 doi:10.1016/j.indcrop.2015.02.047
- 139 Asressu KH, Tesema TK. Chemical and antimicrobial investigations on essential oil of Rosmarinus officinalis leaves grown in Ethiopia and comparison with other countries. J Appl Pharm 2014; 6: 132-142 doi:10.21065/19204159.6.3.112
- 140 Thanh TT, Lan LX, Thu H, Tam NKM. Isolation by different processes and in vitro bioactivities of rosemary (Rosmarinus officinalis L.) essential oil. AIP Conf Proc 2017; 020040: 1878 doi:10.1063/1.5000208
- 141 Begum A, Sandhya S, Ali SS, Vinod KR, Reddy S, Banji D. An in-depth review on the medicinal flora Rosmarinus officinalis (lamiaceae). Acta Sci Pol Technol Aliment 2013; 12: 61-73
- 142 Dentali SJ, Hoffmann JJ. 16-hydroxycarnosic acid, a diterpene from Salvia apiana . Phytochemistry 1990; 29: 993-994 doi:10.1016/0031-9422(90)80066-P
- 143 Okamura N, Fujimoto Y, Kuwabara S, Yagi A. High-performance liquid chromatographic determination of carnosic acid and carnosol in Rosmarinus officinalis and Salvia officinalis . J Chromatogr A 1994; 679: 381-386 doi:10.1016/0021-9673(94)80582-2
- 144 Wellwood CRL, Cole RA. Relevance of carnosic acid concentrations to the selection of rosemary, Rosmarinus officinalis (L.), accessions for optimization of antioxidant yield. J Agric Food Chem 2004; 52: 6101-6107 doi:10.1021/jf035335p
- 145 Ben Farhat M, Jordán MJ, Chaouech-Hamada R, Landoulsi A, Sotomayor JA. Variations in essential oil, phenolic compounds, and antioxidant activity of Tunisian cultivated Salvia officinalis L. J Agric Food Chem 2009; 57: 10349-10356 doi:10.1021/jf901877x
- 146 Pavić V, Jakovljević M, Molnar M, Jokić S. Extraction of carnosic acid and carnosol from sage (Salvia officinalis l.) leaves by supercritical fluid extraction and their antioxidant and antibacterial activity. Plants 2019; 8: 1-14 doi:10.3390/plants8010016
- 147 Kontogianni VG, Tomic G, Nikolic I, Nerantzaki AA, Sayyad N, Stosic-Grujicic S, Stojanovic I, Gerothanassis IP, Tzakos AG. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem 2013; 136: 120-129 doi:10.1016/j.foodchem.2012.07.091
- 148 Chatterjee A, Tandon S, Ahmad A. Comparative extraction and downstream processing techniques for quantitative analysis of rosmarinic acid in Rosmarinus officinalis . Asian J Chem 2014; 26: 4313-4318 doi:10.14233/ajchem.2014.16266
- 149 Wang H, Provan GJ, Helliwell K. Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem 2004; 87: 307-311 doi:10.1016/j.foodchem.2003.12.029
- 150 Bandoniene D, Murkovic M, Venskutonis PR. Determination of rosmarinic acid in sage and borage leaves by high-performance liquid chromatography with different detection methods. J Chromatogr Sci 2005; 43: 372-376 doi:10.1093/chromsci/43.7.372
- 151 Elansary HO, Szopa A, Kubica P, Ekiert H, El-Ansary DO, Al-Mana FA, Mahmoud EA. Saudi Rosmarinus officinalis and Ocimum basilicum L. Polyphenols and Biological Activities. Processes 2020; 8: 446 doi:10.3390/pr8040446
- 152 Dent M, Dragović-Uzelac V, Penić M, Brncic M, Bosiljkov T, Levaj B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) extracts. Food Technol Biotechnol 2013; 51: 84-91